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Fig. 1. GarmentImage encodes a garment sewing pattern’s geometry, topology and placement as raster data. This leads to a more continuous latent space and
improved generalizability to unseen topologies compared to vector-based sewing pattern representation. (a) Interpolation between the two patterns with
different topologies (green and purple) in the latent space of the GarmentImage-trained VAE yields a continuous transition and seamless panel merging (top),
whereas the vector-based representation-trained VAE generates an invalid pattern (bottom). (b) When given an image of an unseen garment type (top + skirt),
the GarmentImage-trained model successfully predicts the new pattern (top), whereas the vector-based model defaults to a known pattern (top + pants)
present in the training data (bottom).

Garment sewing patterns are the design language behind clothing, yet their
current vector-based digital representations weren’t built with machine
learning in mind. Vector-based representation encodes a sewing pattern as a
discrete set of panels, each defined as a sequence of lines and curves, stitching
information between panels and the placement of each panel around a
body. However, this representation causes two major challenges for neural
networks: discontinuity in latent space between patterns with different
topologies and limited generalization to garments with unseen topologies in
the training data. In this work, we introduce GarmentImage, a unified raster-
based sewing pattern representation. GarmentImage encodes a garment
sewing pattern’s geometry, topology and placement into multi-channel
regular grids. Machine learning models trained on GarmentImage achieve
seamless transitions between patterns with different topologies and show
better generalization capabilities compared to models trained on vector-
based representation. We demonstrate the effectiveness of GarmentImage
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across three applications: pattern exploration in latent space, text-based
pattern editing, and image-to-pattern prediction. The results show that
GarmentImage achieves superior performance on these applications using
only simple convolutional networks.
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1 Introduction
A sewing pattern is a pre-designed template to cut fabric pieces for
creating a garment or textile item [Aldrich 2015; Armstrong 2014]. It
typically consists of a collection of 2D fabric pieces, or panels, with
annotations specifying connectivity among borders and placements
around a body. In the past, a sewing pattern was drawn directly onto
fabric or paper using rulers andmeasuring tapes. Later, in Computer-
Aided Design systems, it is presented as a discrete collection of 2D
shapes composed of lines and curves. In recent years, many learning-
based methods have utilized this vector-based representation for
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various tasks, such as inferring garment sewing patterns from point
cloud [Korosteleva and Lee 2022], photograph [Liu et al. 2023], and
text [He et al. 2024]. These advancements significantly simplify the
process of designing garment sewing patterns.
Despite the widespread use of vector-based representation, we

observe two challenges when using it in learning-based methods.
1. Discontinuity in latent space: In vector-based representation,
two patterns with similar overall 2D shapes but different topolo-
gies often have different numbers of panels and panel topologies.
This causes the latent space created by encoding the vector-based
representation to show significant discontinuities between patterns
with different topologies (Figure 1(a)). 2. Limited generalization
to garments with topologies unseen in the training data: The
above challenge also extends to pattern prediction from a given
input, such as image or 3D model of a draped garment. Visually
similar inputs can lead to significantly different vector-based pat-
tern representations. This increases the Lipschitz bound of machine
learning models trained to predict patterns from inputs, reducing
their ability to generalize to patterns with unseen topologies (Fig-
ure 1(b)). Additionally, handling variable numbers of panels across
multiple garment types requires machine learning models to implic-
itly map input patterns to a discrete set of panels from a predefined
panel pool. This discrete set selection becomes particularly chal-
lenging for garments with unseen topologies, further limiting the
generalization ability of a trained model.
To address these challenges, we present GarmentImage, a novel

raster representation of sewing patterns. GarmentImage integrates
the discrete collection of 2D panels, the connectivity among panels,
and the placement of panels into multi-channel 2D grids. Each
grid cell contains an inside/outside flag indicating occupancy, four
edges with associated edge types embedding stitching information,
and a local deformation matrix capturing the panel geometry. The
placement of a panel around a body is implicitly represented by the
location of its associated cells on the 2D grid.
GarmentImage brings several benefits. First, the resulting repre-

sentation is a 2Dmatrix of numerical values, similar to a raster image.
This enables the use of established raster image generative modeling
techniques to model, edit, and optimize sewing patterns. We employ
simple convolutional neural networks to encode and decode the
GarmentImage, demonstrating that even a straightforward network
structure can effectively handle the complex pattern representation
and its manipulation. Second, changes in pattern topology are em-
bedded within the grid structure in GarmentImage rather than as
discrete panel selection in vector-based representation. This leads
to a continuous transition in the latent space between patterns with
different topologies, enabling both continuous topology interpola-
tion and prompt-driven pattern optimization directly in the latent
space (Figure 1(a)). Third, when inferring the pattern from an input,
such as image, we can directly predict the GarmentImage as a whole
and then procedurally reconstruct the discrete panel sets, effectively
addressing the challenge of discrete panel selection. Additionally,
garments with similar visual looks have similar GarmentImage rep-
resentations regardless of topology. These properties improve the
generalization ability of machine learning models trained on Gar-
mentImage, leading to better pattern prediction performance on
garments with unseen topologies (Figure 1(b)).

To summarize, the contribution of this work is

• we present GarmentImage, a raster-based sewing pattern rep-
resentation that integrates geometry, topology and placement
information into multi-channel regular grids.

• we showcase its advantages on interpolation and general-
ization ability over three applications: (1) VAE latent space
exploration, (2) text-based pattern editing, and (3) image-to-
pattern prediction.

2 Related Work

2.1 Garment Pattern Representation
Garments in our daily lives are composed of various fabric pieces
sewn together. To translate this into a digital format, sewing patterns
are often represented as a collection of polygons called panels, with
stitching details defining how these panels are assembled. The panel
is often defined as a closed loop of parametric curves (e.g., B-splines
or Bezier curves), defined by vertices and control points.
In computer graphics, the processing of garment panels varies

based on the nature of the task. For tasks involving 3D surface data,
such as garment simulation [Narain et al. 2012], sewing pattern
grading [Brouet et al. 2012; Wang 2018] and sewing pattern ad-
justment from 3D shape editing [Bartle et al. 2016; Qi and Igarashi
2024] or sketch [Li et al. 2018], panels are often processed as a 2D
mesh, which provides computational simplicity and ease of manip-
ulation. For example, to simulate the details of the cloth, such as
wrinkles, Narain et al. [2012] presented each panel as a triangulated
2D mesh, and dynamically refined and coarsened triangle meshes to
efficiently model the details. On the other hand, for tasks that focus
on the panel’s shape only, e.g., garment pattern inferences from
image [Chen et al. 2024; Jeong et al. 2015; Liu et al. 2023; Su et al.
2020; Yang et al. 2018], sketch [Wang et al. 2018], 3D point cloud
[Korosteleva and Lee 2022], a parametrized representation is usu-
ally adopted. For example, to predict the sewing pattern of a given
image, Yang et al. [2018] parametrized the sewing pattern on several
parameters that define the pattern size, then estimated those pa-
rameters with iterative optimization [Kennedy and Eberhart 1995].
Recently, GarmentCode [Korosteleva and Sorkine-Hornung 2023]
and GarmentCodeData[Korosteleva et al. 2024] presented a proce-
dural way to generate the garment patterns at scale parametrized
on body parameters, in which each garment panel is still repre-
sented by parametric curves. Design2GarmentCode [Zhou et al.
2025] used fine-tuned Large Multimodal Models to directly generate
GarmentCode [Korosteleva and Sorkine-Hornung 2023] programs
from multi-modal design input.
Different from the aforementioned works, in this paper, we pro-

pose to model a garment pattern as raster data (2D grids), a bitmap
representation composed of multiple concepts, including layers,
inside/outside flags, edge types, and local deformation matrices
[Igarashi et al. 2005; Sorkine and Alexa 2007]. Our work is inspired
by methods in computer graphics that map 2D and 3D surfaces to
a grid space. Geometry Images represented a 3D surface into a 2D
image [Gu et al. 2002], and it has been used to learn 3D surface
models by neural networks [Groueix et al. 2018; Sinha et al. 2016].
Similarly, Polycube mapped a 3D surface to a set of 2D grid panels
[Tarini et al. 2004] and Polysquare mapped 2D shape onto a 2D grid
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[Liu et al. 2017; Xiao et al. 2018]. Due to diverse panel shapes and
the equal seam length constraint, we use a simple strategy to ro-
bustly project panel shapes onto 2D grids. We also draw inspiration
from Shen et al. [2020], which modeled the 3D garment as an image
representation within the UV space of the human body. However,
their work does not explore pattern representation.

2.2 Garment Pattern Prediction from an Input
Pattern prediction from 3D input. Given a 3D garment mesh
as input, the shape is first segmented into patches guided by user
sketches [Wang et al. 2005], predefined seams [Bang et al. 2021],
or woven fabric properties [Pietroni et al. 2022]. These patches
are then parameterized into 2D using surface flattening techniques
[Sorkine and Alexa 2007; Wang et al. 2002]. Recently, researchers
have explored data-driven approaches for extracting sewing patterns
from 3D data [Goto and Umetani 2021; Korosteleva and Lee 2022].
Goto et al. [2021] computed the pattern classification on 3D input
from multiple-image segmentation learned by an image translation
network [Ronneberger et al. 2015]. NeuralTailor [Korosteleva and
Lee 2022] represented a model that converts a 3D point cloud to a
garment pattern, learning from a pattern data set [Korosteleva and
Lee 2021], where the model first generated a sequence of panels
choosing from a set of predefined panel categories and then inferred
their shape.
Pattern prediction from 2D image. Given an image as input,
a common approach is to match the garment with a parametric
sewing pattern, then optimize the pattern’s parameters for garment
reconstruction from images [Jeong et al. 2015; Su et al. 2020; Yang
et al. 2018].Wang et al. [2018] proposed to learn a shared latent shape
space between 2D sketches, garment and body shape parameters,
and draped garment shapes by training multiple encoder-decoder
networks for each type of garment, enabling fast pattern inference
from sketch. Recently, Liu et al. [2023] created a comprehensive
dataset with various human poses, body shapes, and sewing patterns,
and introduce a two-level Transformer decoder to recover garment
panels from learned panel queries defined for all panel types.
Pattern generation from text. Recently, DressCode [He et al.
2024] proposed a method to generate sewing patterns from a text
by first quantizing the pattern to a sequence of tokens and using a
GPT-based architecture to generate the tokens autoregressively.
These studies represent patterns as discrete panels, either using

a set of parameterized Bézier curves or a sequence of tokens. Thus,
these approaches encounter the two challenges (discontinuity and
less generalizability) outlined in Section 1. In contrast, GarmentIm-
age represents a pattern as integrated raster data, thus avoiding
these challenges. We demonstrate its advantages on tasks such as
pattern exploration in latent space, text-based pattern editing and
image-to-pattern prediction in Section 4.

3 GarmentImage
GarmentImage representation encodes a sewing pattern—including
a discrete collection of 2D panels, stitching information, and the
placement of each piece on the body—as raster data (Section 3.1). It
serves as an intermediate data structure connecting vector-based

pattern representation andmachine learning models. Given a vector-
format garment pattern, the encoding process (Section 3.2) trans-
forms it into a GarmentImage suitable for input to learning-based
methods. Conversely, once a GarmentImage is generated by a model,
the decoding process (Section 3.3) reconstructs it into a vector-based
pattern compatible with existing fashion pipelines, such as simu-
lation. In what follows, we refer to a vector-based sewing pattern
simply as a sewing pattern or pattern, and use the term GarmentIm-
age to denote our proposed sewing pattern representation.

3.1 Representation
Figure 2 provides an overview of the four core concepts in the
GarmentImage representation. We describe each concept in detail
below and explain how their corresponding values are computed in
next section (Section 3.2).

Back layer

Front layer

Deformation 
matrix

Outside

Inside

Back layer

Inside

Outside

Deformation 
matrix

Edge types

Fig. 2. Representation overview.

3.1.1 Layer. Garmen-
tImage represents a
sewing pattern using
two distinct layers:
a front layer and a
back layer. Panels po-
sitioned in front of the
body are embedded in
the front layer, while
those behind the body
are embedded in the
back layer (front and
back grid sandwich a
T-posed body). Each
layer is represented as
a 2D array of grid cells. Each grid cell is positioned in a specific
location around the 3D human body. Adjacent grid cells are mapped
to adjacent regions on the human body surface. Additionally, each
grid cell contains an inside/outside flag, four edge types, and a
deformation matrix, detailed below.

3.1.2 Inside/Outside Flag. By analogy to parts of the human body
covered by a garment panel, we use the inside/outside flag of a cell
to indicate whether the cell on the layer is covered by the garment
panel or not.

3.1.3 Edge Type. Each grid cell has four edges, and each edge has
a type that stores the boundary and stitching information. As illus-
trated in Figure 2, we define four edge types:

• NON-BOUNDARY: The edge is not on a boundary or stitch.
Completely inside a panel or outside a panel.

• NON-STITCH: The edge is on the boundary of a garment
without stitching. This can appear inside a panel with holes.

• FRONT-TO-BACK: The edge is on the boundary of a panel
and stitched to an edge at the same location on the opposite
layer (front-to-back or back-to-front).

• SIDE-BY-SIDE: The edge is on the boundary of a panel and
stitched to an edge of an adjacent cell on the same layer
(front-to-front, back-to-back).
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3.1.4 Deformation Matrix. While each grid cell is associated with a
local region on a garment panel, the shape of the grid cell (square) is
different from the shape of the local region inside the panel (arbitrary
quadrilateral). The deformation matrix represents the mapping from
the square to the quadrilateral. More specifically, a deformation
matrix 𝐹 ∈ R2×4 consists of four columns, each of which represents
a deformation vector 𝑓 ∈ R2×1 of an edge. It is defined as 𝑣 𝑗 − 𝑣𝑖 ,
where 𝑣𝑖 is the start of the edge and 𝑣 𝑗 is the end of the edge in the
quadrilateral (edges are oriented).

3.2 Encoding
Equipped with the definition of GarmentImage representation de-
scribed in Section 3.1, the encoding process aims to convert the
vector representation of a garment pattern into it.

Given a garment pattern, we first classify the panels into front
panels and back panels using the panels’ placement information. If
a panel covers both the front and back sides of the body, we need
to split it into the front part and back part, which are then stitched
together along the panel boundary. We then deform the panels so
that panel seams are aligned with the corresponding seams to be
stitched together (the intermediate layout between Figure 3(a) to
(b)). Then, we embed the deformed panels into a grid by discretizing
vertex coordinates. Each grid cell is classified as inside if its center
lies within one panel, or outside if it lies outside all panels. As
we have aligned seam edges between stitched panels before, this
discretization can guarantee that (1) panels stitched together is
adjacent in the grid space, (2) there is no gap or overlap between
panels on the grid, and we can handle stitches between seams with
different lengths (see the waistbands in Figure 4(b)).
We then rasterize the front and back grids. After rasterization,

GarmentImage can be intuitively considered as a front grid po-
sitioned in front of the human body and a back grid positioned
behind it. The edge type is automatically determined by the relation
between the adjacent cells (Figure 3(b) to (c)): the corresponding
FRONT-TO-BACK edges are located in the same position at the
front and back grids. A SIDE-BY-SIDE edge is an edge adjacent to
another from a neighboring cell on the same grid, where the two
cells belong to two switched panels.
The final step is to compute the deformation matrix for each

grid cell (Figure 3(b) to (c)). We construct a quad mesh𝑀 = (𝑉 , 𝐸)
by connecting grid cells associated with a panel, where 𝑉 is mesh
vertices and 𝐸 is the mesh edges. We then deform the quad mesh
𝑀 to �̄� = (𝑉 , 𝐸) so that its boundary matches the boundary of the
original panel while minimizing the edge deformation.We formulate
this as a least squares problem with a linear constraint Equation 1:

arg min
�̄�

{
∑︁

(𝑖, 𝑗 ) ∈𝐸

( (
𝑣 𝑗 − 𝑣𝑖

)
−

(
𝑣 𝑗 − 𝑣𝑖

) )2} s.t. 𝐶 𝑣 = 𝑐 (1)

where 𝑣𝑖 and 𝑣𝑖 are the positions of the 𝑖-th vertex of𝑀 before and
after deformation, (𝑖, 𝑗) ∈ 𝐸 indicates a directed edge in 𝑀 from
vertex 𝑣𝑖 to vertex 𝑣 𝑗 . Thematrix𝐶 encodes the linear constraint that
enforces the boundary vertices in �̄� to match their target positions
on the panel boundary curve, given by 𝑐 . We solve Equation 1 using
Lagrange multipliers [GOLUB 2005]. The deformation vector is
defined as 𝑣 𝑗 − 𝑣𝑖 , and the deformation matrix for a cell is formed
by stacking four such deformation vectors as columns.

3.3 Decoding
Although deformation and discretization squash or stretch the origi-
nal panel during encoding, the decoding process aims at reconstruct-
ing the sewing pattern (panels, stitches, and placement of panels)
from GarmentImage that might be generated by a machine learning
model (Figure 3(c) to (d)). This process is deterministic and fully
automated. We compute it in three steps as follows.
Getting panels by cell clustering. First, different panels need to
be separated from GarmentImage. We group grid cells flagged as
inside and enclosed by boundary edges (i.e., grid cell edges with
edge type NON-STITCH, FRONT-TO-BACK, SIDE-BY-SIDE). Each
resulting group of grid cells corresponds to a distinct garment panel.
Panel shape recovery. Next, for each identified panel, we aim to
recover its shape. We construct a quad mesh 𝑀 = (𝑉 , 𝐸) from the
group of grid cells as that of in encoding, and deform the quad mesh
𝑀 to �̂� = (𝑉 , 𝐸). The deformation aims to minimize the difference
between resulting edge 𝑒𝑖, 𝑗 = 𝑣 𝑗 − 𝑣𝑖 , and embedded deformation
vector 𝑓𝑖, 𝑗 while keeping the location of the resulting mesh on the
grid. We formulate it as another least squares problem:

arg min
�̂�

{
∑︁
𝑖, 𝑗∈𝐸

((𝑣 𝑗 − 𝑣𝑖 ) − 𝑓𝑖 𝑗 )2 +
∑︁
𝑣𝑖 ∈𝑉

(𝑣𝑖 − 𝑣𝑖 )2} (2)

where 𝑣𝑖 is the vertex position in𝑀 , (𝑖, 𝑗) ∈ 𝐸 indicates a directed
edge in 𝑀 from vertex 𝑣𝑖 to vertex 𝑣 𝑗 and 𝑓𝑖 𝑗 is its encoded defor-
mation vector.
Stitching and placement recovery. With the recovered panel
shape, we extract stitching information by transferring edge types
from the 2D grids to their corresponding deformed edges on the
panel curves. This defines how different panels are connected. Ad-
ditionally, the location of the grid cells associated with a panel
indicates the panel’s intended placement around the human body.
This spatial information enables the reconstruction of a 3D garment
mesh around a 3D human model for physical simulation, or the
generation of 2D printable patterns that can be cut and stitched to
produce a physical garment.

3.4 Examples
In Figure 4, we show that our representation can represent a large
variety of sewing patterns and design features such as waistbands
and darts. Additionally, GarmentImage can naturally represent pan-
els with holes, a capability that would require a dedicated template
[Korosteleva and Lee 2021, 2022] or command [Korosteleva et al.
2024] in vector-based representation.

4 Experiments
In this section, we introduce three downstream tasks to illustrate
the advantages of GarmentImage. Across all experiments, we use a
16× 16 GarmentImage representation with 34 channels per grid cell,
resulting in a shape of (34, 16, 16). Of these 34 channels, 17 are allo-
cated to the front layer and the remaining 17 to the back layer. Each
set of 17 channels includes one channel for the inside/outside flag,
eight channels encoding the edge types for the bottom and left edges
(as two one-hot vectors of length four), and eight channels repre-
senting the deformation matrix. To build our experimental datasets,
we first sampled diverse sewing patterns by randomizing values of
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Rendering
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Fig. 3. GarmentImage encoding and decoding process. A GarmentImage is automatically encoded from a sewing pattern in vector format and can be
decoded back to the vector format. Given a sewing pattern in vector format (a), we stitch the panels and fill the gaps between them before rasterizing it into a
bitmap (b). During this process, we establish correspondences between the original panel curves and the vertices on the bitmap grid. This allows us to assign
edge types to each grid edge and compute deformation matrices that align the grid cells with the original panels. The resulting GarmentImage representation
for each cell (c) contains inside/outside flags, edge types, and a deformation matrix, visualized as a parallelogram in the cell. For the decoding process, starting
from the GarmentImage, we reconstruct the sewing pattern in vector format (d), which can then be used for applications such as simulation (e).

Vector sewing pa�ern

GarmentImage

Reconstructed sewing pa�ern

(a) darts (b) waistbands (c) holes

Fig. 4. GarmentImage examples. GarmentImage can handle diverse gar-
ments and features such as darts (a), waistbands (b), and holes (c).

various parameters (e.g., sleeve length) defined in sewing pattern
dataset Korosteleva et al. [2021]. Corresponding GarmentImages
representations were then automatically generated from these pat-
terns by the encoding process introducted in Section 3.2. In addition,
we employed the simulator proposed in Korosteleva et al. [2024] to
collect simulated images from sewing patterns.

4.1 VAE Latent Space Exploration
We hypothesize that GarmentImage enhances the robustness of a
trained VAE to new topologies, leading to a more continuous latent
space than that of vector-based representation. To validate this,
we train a VAE using GarmentImage (dubbed GarmentImage VAE)
and another using a vector-based pattern representation (vector-
based VAE) on the same reconstruction task. We compare their
performance based on latent space interpolation and extrapolation
results.

Since GarmentImage is a raster format, we can take advantage of
popular neural network architectures such as convolutional neural
networks (CNNs), which are well-suited for raster data. We train
a CNN-based VAE with 32 dimension latent space using Garmen-
tImage. For the vector-based representation, we adopt the similar
pattern format proposed in [Korosteleva and Lee 2021]. It consists

of 4 × 𝑛 × 16 dimensions, where 4 corresponds to (x, y, curvature x,
curvature y), 𝑛 is the number of panel types, and 16 is the maximum
number of vertex in a panel. To process this format, we employ a
transformer-based model like Sewformer [Liu et al. 2023]. Specif-
ically, we use a transformer-based VAE architecture inspired by
Motionformer [Petrovich et al. 2021], which injects two special to-
kens into the input sequence to predict the mean 𝜇 and standard
deviation 𝜎 of the latent presentation. See Figure 8 for more details.
We prepare three datasets. The first dataset (Figure 9(a,b)) in-

cludes three garment pattern types–dresses, jumpsuits, and top +
pants, and serves to assess whether the trained VAE can generate
an entirely new garment pattern with new topology (two-panel
dresses) through latent-space exploration. The second dataset (Fig-
ure 9(c,d)) contains a wider variety of patterns, such as one-panel
dress with sleeves and top + skirt with sleeves, and is used to eval-
uate the smoothness of the latent spaces when performing latent
space interpolation across diverse garment pattern types. The third
dataset (Figure 9(e, f)) consists of one-panel shirts and two-panel
shirts with and without darts, and is used to test latent space interpo-
lation of GarmentImage in the presence of the complicated garment
feature. We collected around 20,000 garment sewing patterns and
GarmentImages for each garment type.
Latent space interpolation. As shown in Figure 9(a,c,e), the la-
tent space of GarmentImage VAE exhibits continuous interpolations
between garments of different topologies. For example, when in-
terpolating between a top + pants and a one-panel dress pattern
(Figure 9(a)), the topology of generated pattern transitions contin-
uously in the GarmentImage VAE. In contrast, the vector-based
VAE produces discrete jumps, often resulting in invalid garment
patterns—an undesirable behavior for latent space interpolation. Ad-
ditionally, our method can also support a continuous interpolation
in the number and size of darts, as shown in Figure 9(e).
Latent space extrapolation. We assess the model’s ability to gen-
erate patterns with unseen topologies through the latent space ex-
trapolation experiments. As shown in Figure 9(b), when we aim to
perform a topology edit – applying the latent vector difference from
a jumpsuit to top + pants patterns to a dress, GarmentImage VAE
successfully splits the dress into top and skirt panels, while the
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image decoder

Fig. 5. Text-based pattern editing pipeline. (a) We first train a Garmen-
tImage VAE encoder and decoder on the GarmentImage reconstruction
task. (b) Then we train an image decoder that predicts a simulated result in
64 × 64 given a latent code from GarmentImage VAE. (c) We optimize for
the best GarmentImage VAE latent code that minimizes the SDS loss [Poole
et al. 2023] to conform to the input text prompt.

vector-based VAE fails to capture this transfer. In Figure 9(d), Gar-
mentImage VAE can even generate an unseen pattern (top + skirt)
purely by the topology edit in the latent space. In Figure 9(f), Gar-
mentImage VAE successfully transfers the adding darts edit. These
findings demonstrate that GarmentImage VAE’s latent space re-
mains continuous and robust to topological changes, even for gar-
ments not encountered during training.

4.2 Text-based Pattern Editing
We demonstrate an optimization-based text-based pattern editing
application, using the GarmentImage VAE latent space described
in Section 4.1. In Figure 5, we optimize the latent code within this
space to align with a given text prompt. We use Stable Diffusion1
[Rombach et al. 2022] as the text-to-image generator. To bridge the
domain gap with Stable Diffusion, we employ an image decoder that
maps the VAE latent code to a simulated garment image. Finally, we
utilize the SDS loss [Poole et al. 2023] to minimize the distribution
gap in the diffusion model’s latent space between the generated
simulation image and the target text prompt. We collected a dataset
with paired GarmentImage and simulation result image for four
garment types: one-panel sleeveless dresses, one-panel dresses with
sleeves, tops + pants, and tops with sleeves + pants. For simplicity, all
simulated garments are rendered from the front view in brown, at a
resolution of 64 × 64. We train the image decoder on these paired
samples while keeping the VAE encoder fixed. As shown in Figure 6,
the initial GarmentImages adapt their shapes and topologies to
match the target prompts, thanks to the continuous latent space.
For instance, in Figure 6(d), the one-panel dress transforms into a top
+ pants garment, while preserving the shape of the original top’s
silhouette, based on the text prompt "pants".

4.3 Image-to-Pattern Prediction
In this experiment, we compare a model based on GarmentIm-
age with Sewformer [Liu et al. 2023] and NeuralTailor [Korosteleva
and Lee 2022] on image-to-pattern prediction task. Our goal is to

1https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5

“pants”

Training dataset

generated
simulation

images

“long dress”

input output

(a)

“sleeve dress”

input output

(c) (d)

“short dress”

outputinput

(b)

outputinput

generated
simulation

images

Fig. 6. Text-based pattern editing results. The input GarmentImage
patterns adjust their geometry (a, b) and even topology (c, d) to match the
input text prompts.

demonstrate the generalization advantages of our representation
against new garment topologies.

4.3.1 Network Architecture. Figure 10 illustrates our use of a simple
U-Net model to sequentially predict a GarmentImage. First, the
model predicts inside/outside flags from the input image. Next, it
predicts edge types using both the input image and the previously
predicted flags. Finally, the deformation matrix is predicted based
on the input image, inside/outside flags, and edge types. We use L2
loss for the inside/outside flag and deformation matrix prediction,
and cross-entropy loss for edge type prediction.

4.3.2 Training and Evaluation. We evaluate the model’s generaliz-
ability to unseen garment types in two experimental settings.
Generalizability to an entirely new topology. In this experiment,
we evaluate whether the trained models can generalize to a garment
topology that was never encountered during training (Figure 11 left).
To this end, we constructed a dataset D1 including four garment
types: one-panel dresses, one-panel jumpsuits, top + pants, and top +
skirt. Each entry in D1 includes a sewing pattern, its GarmentIm-
age representation and simulated image. The top panels are rendered
in light blue, while the others are brown, clearly indicating the sepa-
ration between the top and bottom panels. We train the model using
only dresses, jumpsuits, and top + pants garments. We test the model
on top + skirt garments to assess how well the model generalizes to
this entirely new topology. We collected approximately 80, 000 gar-
ments for training. We compare our approach with Sewformer [Liu
et al. 2023]. Figure 11 (left) shows that our model accurately predicts
separate skirt panels for the garment’s bottom, while Sewformer is
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Table 1. We report the IoU values between the predicted sewing patterns
and ground truth for both seen and unseen panel combinations on dataset
D2. For seen panel combinations, our approach outperforms NeuralTailor
[Korosteleva and Lee 2022] by 9.1% and achieves performance comparable
to Sewformer [Liu et al. 2023]. Notably, for the unseen panel combination,
our approach significantly surpasses both baseline methods.

Seen combinations Unseen combination

NeuralTailor 0.8390 0.3131
Sewformer 0.9311 0.4260
Ours 0.9304 0.8127

limited to generating only pants panels or invalid ones. We attribute
Sewformer’s limitations to its neural network architecture, designed
to output vector-based sewing pattern representations. For each
garment type, Sewformer implicitly performs panel selection from
predefined panel pools, restricting its flexibility and making it diffi-
cult to generalize to entirely new garment topologies. In contrast,
GarmentImage encodes garment topology through a combination
of layers, inside/outside flags and edge types, enabling it to handle
new garment configurations without needing prior definitions.
Generalizability to an unseen panel combination. In this ex-
periment, we investigate whether the trained model can generalize
to a garment panel combination not presented in the training data
(Figure 11 right). To this end, we constructed a dataset D2 with four
garment types, one-panel dresses, dresses with sleeves, top + pants,
and top with sleeves + pants. To distinguish pants from skirts, we
render the pants in light blue. We train the model using only one-
panel dresses, dresses with sleeves, and top + pants garments. And
evaluate on top with sleeves + pants garments—an unseen combina-
tion of panels. Note that while each individual panel (top, sleeves,
and pants) is present in the training data, their combination in this
form is not. We compare our approach with Sewformer [Liu et al.
2023]. Our training dataset contains approximately 80, 000 garments,
while the test set includes around 6, 500 garments of seen types and
3, 500 of the unseen type. Figure 11 (right) shows that our model
correctly predicts the new panel combination, while Sewformer fails
to generate the sleeves and even valid patterns.

We also compute the intersection-over-union (IoU) between the
predicted sewing patterns and ground truth patterns for each panel
aligning their centroids for a fair comparison. Table 1 presents the
results alongside NeuralTailor [Korosteleva and Lee 2022] and Sew-
former. For NeuralTailor, we adapt the model to accept image inputs
by replacing its point cloud encoder with a pre-trained ResNet-50
[He et al. 2016]. This modified encoder extracts both per-pixel fea-
tures and a global image representation, which are then fed into
NeuralTailor’s original decoder to generate sewing patterns. The
results indicate that our model demonstrates superior generalizabil-
ity to the unseen panel combination compared to both NeuralTailor
and Sewformer.

5 Limitations and Future Work
While our method performs well in several applications, we ac-
knowledge that there is significant room for improvement before it
can be widely embraced by the fashion industry.

(a) (b) (c)

Fig. 7. (a) Invalid encoded GarmentImage. Our automatic encoding
process may generate invalid GarmentImage representations. In this case,
the grid cell containing the SIDE-BY-SIDE edge should be marked as inside,
but it is not. (b, c) Invalid predicted GarmentImage.Our proposed neural
network may predict invalid GarmentImage representations. In (b), the
NON-STITCH edge should be predicted as FRONT-TO-BACK, and in (c),
the NON-BOUNDARY edge should be predicted as SIDE-BY-SIDE.

Non-smooth pattern boundaries. A reconstructed sewing pattern
from GarmentImage may appear distorted or less smooth compared
to its original vector-based representation. This limitation can be
mitigated by increasing the resolution of GarmentImage and incor-
porating post-processing to smooth the reconstructed patterns.
Non-uniqueness of the representation. The same pattern can be

encoded into different GarmentImages. For example, a panel may
be represented as either a dense arrangement of many small cells
or a sparse configuration of fewer large cells. To minimize inconsis-
tencies and potential negative impacts on model performance, it is
important to follow a consistent policy when converting patterns
into GarmentImages for training.
Limitation of the automatic encoding. In our experiments, we

constructed the GarmentImage datasets by automatically encoding
vector-based patterns. However, the current automatic encoding
process is limited to simpler garment types, such as dresses and
jumpsuits, and may produce invalid GarmentImages (see Figure 7(a)).
The success rate for automatic encoding is 89.88% for dresses in the
NeuralTailor dataset [Korosteleva and Lee 2022]. We filtered out
the unsuccessful examples from the training dataset using simple
filtering rules, without requiring human intervention. Handling
more complex garments and addressing corner cases may require
further processing or manual annotation.
Invalid predicted GarmentImage result. GarmentImage represen-

tations generated by neural networks might yield invalid garment
patterns after decoding. We occasionally encounter invalid outputs,
often due to incorrect edge type predictions.We automatically detect
two issues: a NON-STITCH edge between two FRONT-TO-BACK
edges (Figure 7(b)), and a NON-BOUNDARY edge between two
SIDE-BY-SIDE edges (Figure 7(c)). These errors are corrected by
reassigning the appropriate edge types. However, fully resolving
more complex inconsistencies may require human intervention.
Unrealistic garment dataset. Currently, the experiments in Sec-

tion 4.2 and Section 4.3 utilize front-view renderings of simulated
garments. While this setup effectively showcases the superior gener-
alizability of our method, incorporating more realistic images will be
essential for future work aimed at practical, real-world applications.
Extend GarmentImage to more diverse garment features. In this

work, we introduce the basic GarmentImage, which comprises two
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layers corresponding to the front and back sides of a garment. While
layered garment features such as collars, cuffs, and pockets can be
defined as separate panels on the new layer, tuck requires a distinct
edge type labelled as TUCK.

6 Conclusion
In this work, we presented GarmentImage, a novel raster represen-
tation for diverse garment sewing patterns. GarmentImage encodes
geometry, topology, and placement information into multi-channel
grids, providing a unified alternative to traditional vector-based
pattern representations. We demonstrated the advantages of Gar-
mentImage using three applications: VAE latent space exploration,
text-based pattern editing and image-to-pattern prediction. Our re-
sults show that models trained with GarmentImage exhibit a more
continuous latent space and improved generalization to unseen
topologies, compared to vector-based pattern representations. Look-
ing further, we hope that our work will inspire research exploring
the use of the proposed representation in various garment design
applications.
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Fig. 8. Network architecture of vector-based VAE.We employ a transformer-based architecture that takes a sewing pattern sequence and two special
tokens (𝜇 and 𝜎 tokens) as input. Specifically, we give the input tokens into the transformer encoder to produce the mean𝜇 and standard deviation 𝜎 of the
latent presentation. We then compute 𝑧 by reparametrization trick and pass it into the transformer decoder to reconstruct the input sewing pattern sequence.
Note that this VAE only predicts the panels’ shape and does not output stitch information.
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Fig. 9. Latent space experiment results. The latent space of GarmentImage VAE showcases more continuous interpolations and extrapolations between
different topologies than that of vector-based VAE. In (c, left), when interpolating a Top + skirt into Top + pants pattern, GarmentImage VAE continuously splits
the skirt panel into two panels for pants, whereas the vector-based VAE exhibits discrete jumps. A similar behavior is observed in (a). In (e), our method achieves
a continuous interpolation in the number and size of darts, while the vector-based VAE fails to generate valid dart designs. In (b), we demonstrate a topology
edit by transferring the latent vector difference from a one-panel jumpsuit to top + pants pattern, and applying it to a one-panel dress. GarmentImage VAE
successfully transfers the edit, splitting the one-panel dress pattern into top and skirt panels. In contrast, the vector-based VAE fails to capture the intended
transfer. Furthermore, in (d) GarmentImage VAE can generate a previously unseen pattern—a two-panel dress—purely by latent space extrapolation. In (f),
GarmentImage VAE successfully transfers the adding darts edit onto a one-panel shirt. The vector-based VAE fails in both cases.
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(a) Inside/outside flag prediction (b) Edge type prediction (c) Deformation prediction

Fig. 10. Network architecture for Image-to-Pattern prediction (Section 4.3). We employ three separate U-Net models in a step-by-step pipeline. Given
an input image, (a) the first U-Net predicts the inside/outside flags. (b) Using the same input image and the predicted inside/outside flags, the second U-Net
infers the edge types. Finally, (c) the third U-Net predicts deformation matrices from the input image and the previously generated inside/outside flags and
edge types. Each model is trained independently using its ground truth intermediate representations. During inference, these models are applied sequentially.

One-panel dress Top + pantsOne-panel jumpsuit

(a) D1: Garments with an entirely new topology 

Input Ground truthOursSewformer Input Ground truthOursSewformer

One-panel dress Dress with sleeves Top + pants

(b) D2: Garments with an unseen panel combination 

Training dataset Training dataset 

Seen garment types Seen garment types

Unseen garment type (separated skirt) Unseen garment type (top with sleeves + pants)

Fig. 11. Image-to-Pattern prediction results (Section 4.3). We visualize the predicted patterns from an input image using our method and Sewformer [Liu
et al. 2023]. While both methods can predict reasonable sewing patterns for garment types included in the training dataset (top), our method demonstrates
superior generalizability for unseen garment types (bottom). For garments with an entirely new topology (a), our method predicts accurate patterns, whereas
Sewformer usually defaults to patterns presented in the training data. For garments with unseen panel combination (b), Sewformer often produces invalid
patterns, and it frequently omits sleeve panels, despite that the sleeve panel is clearly included in dress with sleeves in the training dataset. In contrast, our
method accurately predicts the correct garment patterns.
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