
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 14, NO. 8, AUGUST 2015 1

Fine-Grained Sketch-Based 3D Shape Retrieval with
Cross-Modal View Attention

Anran Qi, Jifei Song, Yongxin Yang, Yi-Zhe Song, Tao Xiang, Timothy M. Hospedales

Abstract—We study, for the first time, the problem of fine-
grained sketch-based 3D shape retrieval (FG-SBSR), where free-
hand sketches are used as input for instance-level retrieval of 3D
shapes. FG-SBSR has not been possible till now due to a lack
of datasets that exhibit one-to-one sketch-3D correspondences.
The first key contribution of this paper is therefore two new FG-
SBSR datasets, consisting a total of 4,680 sketch-3D pairings from
two object categories. Even with the datasets, FG-SBSR is still
extremely challenging because the inherent domain gap between
2D sketch and 3D shape is large, and that retrieval needs to be
conducted at instance-level as opposed to coarse category-level
matching per traditional SBSR. The second contribution of the
paper is the first cross-modal deep embedding model for FG-
SBSR, that specifically tackles all unique challenges presented
by this new problem. The key novelty of the model is a cross-
modal view attention module, which automatically computes the
optimal combination of 2D projections of a 3D shape given a
query sketch.

Index Terms—sketch, 3D shape, FG-SBSR, Dataset, cross-
modal, view-attention.

I. INTRODUCTION

THE ability to retrieve a specific 3D shape from a large
collection of 3D shape models underpins many important

applications in 3D printing, architectural modelling and film
animation. Research on 3D shape retrieval has particularly
flourished in recent years as AR/VR technologies prevail. As
an input modality, sketch is advantageous over text to retrieve
specific 3D shape instances. This is because it inherently
encodes fine-grained shape and appearance information, whilst
using text to describe a 3D shape instance is often inaccurate
and ambiguous. However, existing sketch-based 3D shape
retrieval (SBSR) methods [1], [2], [3], [4], [5], [6], [7], [8]
predominantly focus on retrieving 3D shapes of the same
category (see Fig. 1 for a comparison between category-level
SBSR and instance-level SBSR). This greatly narrows the
practical advantage of SBSR since text is often a simpler form
of input when only category-level 3D retrieval is concerned.
Type ‘chair’ into a 3D search engine and numerous 3D chairs
will be retrieved. In contrast, we argue that it is when retrieving
a particular chair within a large gallery of 3D chairs that a
sketch-based query is preferred over text.

In this paper, for the first time, the problem of fine-grained
instance-level SBSR (FG-SBSR) is studied. One of the key
reasons for the lack of previous attempts is the lack of FG-
SBSR datasets. All existing SBSR datasets such as the SHREC
series of datasets [9], [3] provide only category-level pairings
between sketches and 3D shapes. They are often obtained
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Fig. 1: Comparison between category-level and fine-grained
sketch-based 3D shape retrieval.

cheaply by merging existing 3D shape datasets with off-the-
shelf sketch datasets that share the same categories. Similar
practice however cannot be followed here, since we are faced
with a much harder problem of collecting instance-level sketch
and photo pairings, i.e., each sketch needs to be drawn with
a specific 3D shape instance as reference1.

As the first contribution of this paper, we present two
FG-SBSR datasets, consisting of a total of 4,680 sketch-
3D pairings (organized as quadruplets) across two categories
(chair and lamp). The dataset is built via crowd-sourcing by
asking users to finger sketch on a touchscreen device. A key
problem that needs to be addressed is that of view ambiguity
– people tend to draw sketches from different viewpoints. We
address this problem by (i) first conducting a pilot study to
determine salient views that ordinary users are accustomed
to draw, and (ii) intentionally allowing for more than one
sketched view per 3D model in our datasets. As a result,
we source three corresponding sketches for each 3D model,
each of which drawn from a specific view angle. We hope
that, by making these two datasets publicly available, we will
greatly stimulate research interest in this new computer vision
problem.

Even with the datasets, solving the FG-SBSR problem is far
from being straightforward. It not only inherits all challenges
brought by traditional category-level 3D shape retrieval, but
also poses a few unique ones on its own. The large domain gap
between sketch and 3D model data first needs to be addressed.
The gap can be broadly factorized into (i) the dimensionality
gap: sketches are represented in 2D, whereas 3D shapes have
a third dimension, (ii) the abstraction gap: sketches are highly
abstract, yet 3D shapes are geometrically realistic, and (iii) the

1Similar trend can also be observed when sketch-based image retrieval
research shifted from category-level to fine-grained [10], [11].
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view gap: sketches are drawn from specific view points, while
3D shape models are entirely view-independent.

As the second contribution, we propose to learn a deep
joint embedding space that simultaneously address all the
aforementioned gaps. In such a space, the two modalities are
aligned, and sketch and 3D shape instances can be compared
by simply computing their distance. More specifically, to
overcome the dimensionality gap, we follow the common
practice [12], [13] in 3D shape recognition by projecting a
3D shape into multiple 2D views. The key problem left now
is to match a sketch from a certain view to the projection of
the 3D shape along one or more views (the view gap). To this
end, a novel cross-modal view attention module is introduced
which automatically selects the best combination of matching
views for further deep alignment. The joint embedding model
is trained with a triplet ranking loss, which had become
the most popular choice to tackle the abstraction gap for
fine-grained sketch-based image retrieval [10], [11]. With the
proposed cross-modal view attention module, a novel triplet
sampling strategy is further devised which greatly increases
the amount of triplets we can sample, leading to better cross-
modal alignment.

Extensive experiments are carried out on the two new
datasets. The results show that the proposed model signifi-
cantly outperforms a number of alternatives extended from ex-
isting category-level SBSR models and instance-level sketch-
based image retrieval models. Importantly we show that the
proposed cross-modal view attention module together with the
tailor-made triplet sampling strategy is the key for the superior
performance.

II. RELATED WORK

3D Shape Recognition Recent deep recognition for 3D
shapes can be broadly categorized into four categories, ac-
cording to how 3D shapes are represented. Point cloud-based
methods [14], [15], [16], [17] directly take point clouds as
input while respecting the permutation invariance of points.
Volumetric-based methods [18], [19], [20], [21], [22] apply
3D convolutional neural network on voxelized shapes directly.
Spherical function-based methods [23], [24] encode 3D shape
as spherical signals and extend convolutional neural networks
to have built-in spherical invariance in order to cope with
3D orientations. View-based methods [12], [25], [26], [13]
encode 3D models using a collection of their 2D projections.
Notable works include [12], which projects 3D objects into
multiple views where each view passes through a foreside
network in order to learn discriminative view descriptors,
followed by view-pooling to combine multiple views. very
recently, [13] proposed to use bilinear pooling to effectively
aggregate convolutional feature of different views. Of those
four categories, view-based methods generally outperform the
other three. In this paper, we also adapt a view-based approach
to encode 3D shapes, but for the first time study a cross-modal
retrieval problem with view attention.
Sketch-based 3D Shape Retrieval Existing sketch-based 3D
shape retrieval (SBSR) all focus on category-level, i.e., given
a query sketch, the retrieved 3D shape is considered to be

correct as long as it belongs to the same category. The earlier
hand-crafted feature based methods [2], [1], [3] have been
followed by the more recent deep learning based models [7],
[4], [5], [6], [8], [27]. All the existing deep category-level
SBSR models aim to learn a joint embedding space for the
3D shape and 2D sketch modalities. Most of them follow the
multi-view CNN (MVCNN) [12] approach originally designed
for 3D shape recognition to project 3D shapes into 2D images
of evenly distributed views, with the exception of [27] which
models 3D shapes as point clouds and employs PointNet [14],
[15] for feature extraction.

Our approach differs significantly from the existing ones in
that we for the first time tackle the instance-level FG-SBSR
problem, which is made possible by the two new datasets
contributed in this paper. Though the problem of focus is
different, the proposed FG-SBSR model is related to the deep
joint embedding based SBSR models [7], [5], [6], [8] in the
use of 2D projections of 3D shape and triplet ranking loss
for embedding space learning. However, there are a couple
of vital differences: (1) Those category-level SBSR models
rely heavily on the category-level labels induced category
classification loss [27], which is not available to our FG-
SBIR problem whereby we focus on retrieving instances of
the same category. (2) Our model is uniquely able to select
the optimal projection views for 3D shape feature extraction,
and has an effective triplet sampling strategy tailor-made for
our view attention module.
Instance-level Sketch-based Image Retrieval Another
closely related problem is fine-grained instance-level sketch-
based image retrieval (FG-SBIR), which has received increas-
ing interest recently [10], [28], [29], [30]. Comparing FG-
SBIR with FG-SBSR, the latter is more challenging in that (i)
sketch and photo are both in 2D, yet there is a dimensionality
mismatch between sketch and 3D shape, (ii) all existing
FG-SBIR datasets assume a common pose between sketch-
photo pairs [10], [11], whereas such view correspondence
has to be separately established in FG-SBSR. As a result,
although the models in [10], [28], [29], [30] are also cross-
modal joint embedding models, the cross-modal view attention
module introduced in this paper is critical to cope with
the dimensionality mismatch and view selection problems,
as validated in our experiments (see Sec. V-C). Note that
FG-SBIR and FG-SBSR share the same difficulties in data
collection due to the tedious sketch-drawing process. Existing
FG-SBIR datasets [10], [11] thus have moderate sizes with
hundreds of sketches per object category – similar to those of
our FG-SBSR datasets.
Attention Mechanism Recently, attention modules have been
introduced to deep models for addressing a variety of different
tasks, including but not limited to visual question answering
(VQA) [31], [32], [33], image captioning [34], [35], [36],
and object retrieval [29]. Different from most existing at-
tention modules, our cross-modal view attention module is
(a) cross-modal and (b) designed for 2D projection view
selection/reweighting rather than spatial feature reweighting.
Cross-modal attention has been exploited in text-visual multi-
modal modelling tasks such as VQA [31], [37], which again
serves a different purpose (image spatial-sentence word co-
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Fig. 2: Examples of the proposed chair and lamp datasets.

attention vs. view attention).

III. FINE-GRAINED INSTANCE-LEVEL SBSR DATASETS

Pilot Study on Sketch View Ambiguity A key problem
facing our sketch collection process is that of view ambiguity,
i.e., given a 3D model (shape), which view(s) are humans
accustomed to produce a sketch for. For that, we conduct
a pilot study where 20 participants are each presented with
200 3D models (100 chairs and 100 lamps), that they can
manually rotate from azimuth 0◦ to 90◦ at 15◦ intervals 2.
While rotating, each is asked to choose 3 views per model
that they are mostly likely to produce a sketch for. We then
aggregate this view selection data (6,000=20×100×3 data
points per category), and choose the top 3 most selected views
as the ones which we collect sketches for. They are 0◦, 30◦,
75◦ for chairs, and 0◦, 45◦, 90◦ for lamps.
Dataset Overview We contribute two fine-grained SBSR
datasets, one for chairs and the other for lamps3. There are
4,680 sketch-3D shape pairs in total (organized as 1,560
quadruplets). Each quadruplet comprises one 3D shape and
three free-hand sketches (i.e., they are not drawn by tracing
the shape images) drawn from three azimuthal angles (views)
respectively, with the 2D projection/rendering of the 3D shape
along the corresponding view as reference. The chair dataset
has 1,005 sketch-3D shape quadruplets with azimuths 0◦,
30◦, 75◦, while the lamp dataset has 555 sketch-3D shape
quadruplets with azimuths 0◦, 45◦, 90◦; Fig. 3 shows some
examples. In each column, we display one specific view from
various types of chair and lamp, indicating the exhaustiveness

2We empirically found that ordinary people are unable to reliably produce
sketches for finer view differences.

3The datasets and code of the proposed model will be made public.

as well as highlighting the appearance difference/domain gap
between 3D shapes and realistic free-hand sketches. The
detailed data collection process is described below.

3D Shape Category Selection There are plenty of 3D shapes
of different categories from existing 3D shape recognition
datasets. The 3D shapes used in our datasets are selected from
the largest 3D shape dataset ShapeNet [38]. Among the 270
object categories, chair and lamp are chosen for the following
reasons: (1) They are among only a handful of categories that
provide over 1000 instances per category. (2) Objects in these
two categories have a lesser degree of symmetry; as a result,
when viewed from different angles, the appearance varies (see
Fig. 3). In contrast, categories such as wine bottle are much
less sensitive to view angle. This view-sensitive nature of 3D
shapes makes these two categories more challenging for FG-
SBSR.

3D Shape Instance Selection For each category, we manually
select 3D shape instances to be used in our datasets. Inspired
by [39], [40], the following criteria are used for instance
selection. (i) Representative: There are many subcategories
of chairs and lamps in ShapeNet (e.g., armchair, lounge
chair, Windsor chair for chairs, and floor lamp, table lamp
for lamps). We make sure that representative instances from
each subcategory are chosen. (ii) Distinctness: The selected
instances in each subcategory need to be visually distinct so
that it is possible that their differences can be visually depicted
by sketches. (iii) View-sensitive: As mentioned earlier, the
two categories are chosen because they are in general view-
sensitive. However, there are still some instances which will
produce identical images when projected to different views.
These instances are not chosen. (iv) Sketchability: The 3D
shape should be easy to sketch. The free-hand sketches would
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Fig. 3: Examples illustrating our 3D shape instance selection
criteria. See text for details.

be drawn by people with diverse drawing skills to represent
real-world application scenarios. We therefore avoid 3D shapes
that contain complicated texture that poses a distraction for the
sketch drawers. Following these four criteria, 1,005 and 555
3D shapes are selected for chair and lamp respectively.
Sketch Collection In this step, the rendered images of each
3D shape from the selected azimuthal angles are used as
references to collect sketches. 30 volunteers are recruited
to sketch the rendered images. Concretely, we show one
chair/lamp image to a volunteer for 15 seconds, then display a
blank canvas and let the volunteer sketch the object that he/she
just saw from memory using their fingers on a tablet/phone.
Two sketches for each image (projection of the 3D shape) are
drawn by different volunteers. After finishing collecting all
sketches, for quality control purposes, three volunteers vote to
select the best sketch out of the two. Note that none of the
volunteers has had any art training, and is thus representing
the general population who might use the fine-grained SBSR
system. As a result, the collected sketches are nowhere near
perfect (e.g., lacking detail, and distorted strokes, see Fig. 3),
making subsequent fine-grained SBSR task challenging. It is
also noted that even when a rendered projection image is of
a certain view, the corresponding sketch’s view could deviate,
as expected from amateur drawers.

IV. METHODOLOGY

A. Problem Definition and Model Overview

The sketches in a FG-SBSR dataset are denoted as
{Si}Ii=1 ∈ S . Each sketch depicts an object instance whose
identity is indicated as i and there are I identities in total in
the dataset. Note that since each 3D shape/object identity has
3 sketches in U = 3 views, we further denote Si = {s(u)i }Uu=1

where s(u)i is the uth view of the ith sketch identity. The 3D
shapes are denoted as {Xj}Jj=1 ∈ X where j is the identity
index. To reduce the domain gap, each 3D shape Xj can be
represented by an arbitrary number of rendered 2D views for
matching with the 2D sketches, denoted as Xj = {x(v)j }Vv=1,
where x(v)j is the vth view of the jth 3D shape and V is the
number of render views. Thus, the problem of fine-grained
instance-level SBSR can be defined as: given a query sketch
s
(u)
i , compute the similarity score between it and Xj in a

gallery set of 3D shapes and use the score to rank the whole
gallery set so that the true match (same instance identity) for
the query sketch is ranked at the top.

To address this problem, We propose a deep multi-modal
joint embedding model for cross-domain retrieval. In the
learned embedding space, the similarity between a sketch

and a 3D shape can be computed simply as the Euclidean
distance between the two corresponding feature vectors. Our
model contains multiple branches for sketch and 3D shape
(projected into different views). The subnetworks in different
branches have tied parameters so that the whole model is a
Siamese network. Importantly a cross-modal view attention
module is introduced to use a query sketch to automatically
determine how the projections of different views are fused
to form the final representation of the 3D shape in the joint
embedding space. The model is trained with a triplet ranking
loss formulation with a specifically designed triplet sampling
strategy. A schematic illustration of the model can be seen in
Fig. 4.

B. Learning Joint Embedding

Siamese networks have been shown to be effective in
instance-level sketch-based image retrieval [10], and we adopt
a similar architecture in our model to learn a joint embedding
space for the sketch and 3D shape modalities. For the back-
bone network that extracts the feature for both sketch and 3D
shape (projections), we employ VGG-16 (config. E) [41], and
remove the final class label prediction layer. For each branch,
the output of final layer (without ReLU function) is used as
the deep feature.

The sketch branch is set as the anchor branch, where the
input is a single view sketch s

(u)
i . The other two branches,

positive and negative 3D shape branches encode the informa-
tion of 3D shapes. Specifically, our 3D shape representation
starts from multiple projections of 3D shapes Xj = {x(v)j }Vv=1.
After 2D projections of 3D shapes are obtained following
the multi-view CNN [12], each projected 2D image is fed
into the first part of the network F (·) (13 convolutional
layers) separately. View features are then aggregated to one
feature vector via cross-modal view attention, to be detailed
in Sec. IV-C. Eventually the aggregated 3D shape features pass
through the second part of the network G(·) (2 fully connected
layers). All three branches (i.e., G(F (·))) share the parameters,
hence the whole network is Siamese. To train the network, we
form sketch, positive and negative 3D shape triplets and use a
triplet ranking loss. The triplet construction strategy is detailed
in Sec. IV-D.

C. Cross-Modal View Attention

As shown in Fig. 4, even though all V views of the positive
3D shapes contain the same object instance, their visual
appearance can be drastically different from that of the anchor
sketch. It is thus important to dynamically (anchor sketch-
specifically) determine the relevance of each view before the
features extracted from each view fused to represent the 3D
shape. To this end, we propose a cross-modal view attention
module, which generates a view selection vector used for
guiding the fusion of the V views.

Concretely, given an anchor sketch s
(u)
i , we denote the

sketch feature vector as f (u)i ∈ R4096 which is the final output
of VGG-16 in the sketch branch, where i is the sketch identity
index and u is the sketch view index. We can then obtain the
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Fig. 4: An illustration of the proposed fine-grained SBSR with cross-modal view attention. Given an anchor sketch in the
yellow box, the positive 3D shape is in blue boxes and the negative 3D shape is in magenta boxes. F (·) is the first part of

the network and G(·) is the second part of the network. Fa(·) is the view attention module where α is the output view
attention vector. The vectors in blue/magenta dashed boxes are used to generate positive/negative 3D feature β̂+/β̂−. �

represents dot product.

attention vector g(u)i ∈ RV by feeding the feature vector into
the attention module:

g
(u)
i = Fa(f

(u)
i ;Wa), (1)

where Fa(·) is the view attention function learned by the
view attention module and Wa are the weights/parameters of
that module. In our model, the view attention module is a
network consisting of one fully connected layer (4096→ V ).
Specifically, the vth element in the attention vector g

(u)
i

represents its view attention score corresponding to view v
in 2D projections of 3D shape, denoted as gi,u,v .

We then design a specific normalization scheme to refine
the attention vector. The final view attention score, αi,u,v can
be calculated following:

αi,u,v = `2 softmax(gi,u,v; τ)

=
exp(τ−2gi,u,v‖gi,u,·‖−12 )∑V
v=1 exp(τ−2gi,u,v‖gi,u,·‖−12 )

(2)

Note that the original attention score gi,u,v is normalized
twice. First, it is normalized by an `2 norm: this helps the
numerical stability as the dimension changes significantly
(4096 → V ) which leads to very large logit values. Second,
it is normalized by a softmax function, by which a valid
probability vector is produced. Note that, in the softmax
function, we introduce a trainable temperature variable, τ , to
further help the training. τ is designed to adjust the logits
again. The motivation behind this design is that `2 norm
may lead to overly flat probability meaning all views will be
selected with a similar weight, and τ can help sharpen it to
focus on a small number of views.

The fusion of the 2D projections of the 3D shape is then
computed by view-wise dot product of the view attention
vector to the 3D shape embedding as follows:

β̂j,i,u =

V∑
v=1

αi,u,v · β(v)
j (3)

where β(v)
j is the vth view projection feature of the jth 3D

shape extracted using F (·), and β̂j,i,u is the attended view
feature of jth 3D shape when a sketch indexed by i (identity)
and u (view) is used to produce the attention vector. I.e.,
Eq. 3 produces a re-weighted sum (the weight is attention) of
V projected 3D shape images’ convolutional features. After
that, we feed the attended feature into the second part of the
network (G(·)) to generate the final feature, which is of the
same dimensionality as the sketch branch, i.e., 4096. That is,
after G(·), both 3D shape and sketch are represented in the
same joint embedding space.

D. Triplet Sampling Strategy

We propose a triplet sampling strategy tailored for our
model with view attention. The objective is to greatly increase
the number of triplets that can be formed from a mini-batch of
sketch and 3D shapes. Each mini-batch consists of B identities
(i.e., B ·U sketches and B 3D shape with B · V rendered 2D
views). The intuition is that we assume the view attention
vector is only relative to sketch view regardless of sketch
identity. In other words, the second index of 3D view attended
feature β̂j,i,u, i.e., the sketch identity i indicating which sketch
delivers the attention, is a dummy variable. Based on this
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assumption, given an anchor sketch s
(u)
i , the positive and

negative condition for a view attended 3D feature β̂j,i′,u′ in
the triplet tuple is determined only by 3D identity j and sketch
view u′, regardless of the sketch identity i′.

Formally, given an anchor sketch s
(u)
i , the positive 3D

feature set P is defined as:

P =
{
G(β̂+

j,i′,u′)
}

=

{
G

( V∑
v=1

αi′,u′,v · β(v)
j

)
,

j = i, u′ = u, i′ ∈ [1, 2, ...B]

} (4)

This set P is based on the features of projections
{
β
(v)
j

}V
v=1

from the 3D identity j which is in the same identity with
anchor sketch identity i. Then each projection feature β

(v)
j

is further attended by view attention score ai′,u′,v which can
be produced by any sketches that are from the same view
with the anchor sketch, i.e., u′ = u. As a result, for each
anchor sketch s

(u)
i in one mini-batch, there are B positive

samples augmented by B view attention vectors, where B is
the number of sketch identities in the batch.

The negative 3D feature set N is formed as:

N =
{
G(β̂−j,i′,u′)

}
=

{
G

( V∑
v=1

αi′,u′,v · β(v)
j

)
,

j 6= i, u′ ∈ [1, 2, ..., U ], i′ ∈ [1, 2, ..., B]

}
.

(5)

In contrast to the positive set P , the negative set N is based
on the features of projections

{
β
(v)
j

}V
v=1

from the different
identities with the anchor sketch identity i. Since the sketch
and 3D shape identity are different fundamentally, no matter
what view attention vectors are used to attend the projections
features, the attended feature should be in the negative set. In
other words, all the view attention vectors in one batch can be
used to attend the negative projection features, which results
in (B − 1) ·B · U negative samples.

We can now define our view-aware triplet loss as:

Ltri =

B∑
i

U∑
u

|P|∑
p

|N |∑
n

max
(

0,∆ +D
(
f
(u)
i , h+p

)
−D

(
f
(u)
i , h−n

))
,

(6)

where h+p and h−n denotes the pth/nth 3D shape feature from
the positive set P and negative set N , respectively; ∆ is the
margin, D(·) is the `2 distance function. Note that we constrain
both sketch and 3D embedding such that they live on the multi-
dimensional hypersphere, i.e., ‖G(·)‖ = 1.

The overall pipeline of training the proposed FG-SBSR
model is summarized in Alg. 1. We show in our experiments
(see Sec. V-C) that the proposed view-identity hybrid sampling
strategy is much more effective than the standard sampling
strategy whereby the positive 3D shapes are selected only
according to identity.

Algorithm 1 Training of the proposed FG-SBSR model.
Input:

Sketch, S, 3D Shape, X in a sampled batch of size B;
1: for t = 1 to max-iteration do
2: Sample a batch data, S ∈ S, X ∈ X
3: for s

(u)
i ∈ S, x(v)j ∈ X , i, j ∈ [1, 2, . . . , B], u ∈

[1, 2, . . . , U ], v ∈ [1, 2, . . . , V ] do
4: f

(u)
i = G(F (s

(u)
i )) and β(v)

j = F (x
(v)
j );

5: g
(u)
i = Fa(f

(u)
i ;Wa)

6: αi,u,v = `2 softmax(gi,u,v; τ)

7: β̂j,i,u =
∑V

v=1 αi,u,v · β(v)
j

8: end for
9: for s(u)i ∈ S do

10: Pos. Set P:
{
G(β̂+

j,i′,u′)
}
, |P| = B;

11: Neg. Set N :
{
G(β̂−

j,i′,u′)
}
, |N | = (B − 1)·B·U ;

12: end for
13: Optimize Ltri;
14: end for

V. EXPERIMENTS

A. Experiment Settings

Dataset Splits and Pre-processing There are 1,005 and 555
sketch-3D shape quadruplets in the introduced chair and lamp
datasets respectively. Of these, we use 804 and 444 quadruplets
respectively (i.e., 80%) for training, and the rest for testing.
Recall that each sketch-3D shape quadruplet contains three
sketches of different views and one 3D shape. Following
[12], we put the centroid of the shape at the origin of the
spherical coordinate system and translate camera uniformly
so that V = 24 view projections are rendered with model
fitted within frame, though our model is not constrained to
these 24 consecutive views. We resize all sketches/3D views
to the same size of 224× 224.
Implementation Details The model is implemented on Ten-
sorflow. The initial learning rate is set to 0.0001. And the
batch size is 3, which means that each batch contains 3 sketch
identities, each containing 3 sketch views, and 3×24 2D view
projections of the 3 corresponding 3D shape identities. The
margin ∆ in the triplet loss is 0.3 (see Eq. 6). The model is
pretrained on ImageNet [42] then trained for 50 epochs for
each dataset. The trainable temperature variable, τ (see Eq. 2)
is initialized to 2.0.
Evaluation Metrics During testing, given a query sketch, the
gallery of 3D shapes are ranked based on the distance to the
query sketch in the joint embedding space. For our task of
fine-grained instance-level 3D shape retrieval, the cumulative
matching accuracy acc@K is used for evaluation, which is
calculated as the percentage of query sketches whose true-
match 3D shapes are ranked in the top K.

B. Baselines

As discussed in Sec. II, there are no existing FG-SBSR
models, as the problem is studied for the first time in this
paper. Furthermore, neither the existing category-level SBSR
models, nor the FG-SBIR models can be used directly for
comparison: the former need category labels and the latter
do not handle views. Therefore, the baselines compared here
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Chair Dataset Lamp Dataset
Method acc.@1 acc.@5 acc.@1 acc.@5

SBSVSR 0.4494 0.7794 0.4805 0.7987
FG-T-M 0.4760 0.8126 0.4925 0.8348

FG-T-A-M 0.4710 0.7910 0.4895 0.8168
FG-T-P 0.0050 0.0448 0.0090 0.0360
FG-T-S 0.1177 0.4013 0.1261 0.3844

Synthetic 0.3201 0.6517 0.3303 0.6456
Our model 0.5672 0.8706 0.5766 0.8739

TABLE I: Comparative results against baselines.

Chair Dataset Lamp Dataset
Method acc.@1 acc.@5 acc.@1 acc.@5
w/o τ 0.5108 0.8391 0.5315 0.8468
VIIST 0.4975 0.8242 0.5345 0.8318
VSIST 0.5589 0.8507 0.5465 0.8498

Heterogeneous 0.2670 0.7380 0.2883 0.7147
Our model 0.5672 0.8706 0.5766 0.8739

TABLE II: Contributions of the different components

are designed by us by merging existing category-level SBSR
models with FG-SBIR models. Besides, we compare with
alternative 3D shape representation learning networks that do
not require 2D projection, including point cloud CNN [14]
and spherical CNN [24].
Sketch-based Single View 3D Shape Retrieval (SBSVSR)
This model essentially follows the FG-SBIR model in [10] but
with the same branch subnet architecture for fair comparison.
To avoid dealing with the view problem, each 3D shape is
rendered to 3 views in accordance with the three sketch views.
To form the triplets, the positive 3D shape will have the same
identity and same view as the anchor sketch whilst the negative
3D shape has a different identity. In addition, we jointly (multi-
task) train a sketch view classifier to classify each sketch into
the three views. During testing for each query sketch, we
predict the view class first, then select the projected 3D shape
for that view to extract features in the joint embedding space
for matching.
Fine-grained Triplet based on MVCNN [12] (FG-T-M) In
this model, following most category-level SBSR models [7],
[5], [6], [8], we first project the 3D shapes into 24 views
for feature extraction as in MVCNN [12], in each view. The
resultant feature vectors are then fused by max-pooling, i.e.,
without assigning different weights to different views as our
model does. The overall network architecture still resembles
that of [10] and a triplet loss is also adopted as supervision.
In summary, the main difference between this model and ours
is the cross-modal view attention module.
Fine-grained Triplet with Spatial Attention (FG-T-A-M)
[29] proposed an improved FG-SBIR model which includes a
soft-attention module in both sketch and photo branches. Here
we introduce the same spatial attention module in [29] to FG-
T-M. Concretely, two convolutional layers with kernel size 1
are added to the output of the final convolutional+pooling layer
of the CNN in each branch and the two attention modules do
not share parameters.
Fine-grained Triplet based on Non-projection Based 3D
Deep Embeddings Here we benchmark against alternative

deep 3D representations, as opposed to 2D projection based.
More specifically, PointNet++ [14] and Spherical CNN [24]
are used in place of MVCNN on the 3D branch of our network,
to form the FG-T-P and FG-T-S baselines, respectively. Since
the 3D shape branch is now view-independent, no view fusion
is necessary.

C. Results

Comparisons against Baselines Table I shows the results of
our model and the five baselines. The following observations
can be made: (1) Our model performs significantly better than
all baselines on both datasets. (2) The single view model
SBSVSR is clearly inferior to all models that project 3D
shapes to 2D views and then fuse them. This is despite the use
of ground truth view information of the sketch. (3) Among
the baselines, FG-T-M is the most competitive one. But the
significant performance gaps (around 9% lower on acc.@1
for both datasets) indicate that performing view selection
rather than simply max-pooling the features of different views
makes a big difference in the model performance. (4) The
spatial attention module in FG-T-A-M failed to improve the
performance of FG-T-M. This suggests that view-attention is
more effective than spatial attention for the FG-SBSR task. (5)
Non-projection based methods are considerably inferior than
projection-based methods. In particular, the FG-T-S model
captures little fine-grained detail due to spectral pooling.
The FG-T-P model completely failed, despite that the same
PointNet++ has been used in the state-of-the-art category-level
SBSR model [27]. This result highlights the vital difference
between category-level and instance-level SBSR: with cate-
gory labels, it is most effective to align the two modalities
in the semantic (category label) space, which bypasses the
view dimensionality mismatch. In contrast, for instance-level
retrieval, the view gap cannot be avoided. And our results
show that 2D projection of 3D shapes is necessary.
Qualitative Results In Fig. 5, we show some examples of
fine-grained SBSR results obtained using our model. The first
column is the query sketch and next sequentially lists the top
6 retrieval results, where the true matches are highlighted in
green. We can see that our model is capable of capturing subtle
differences between similar 3D shapes.
Ablation Studies Here we further evaluate the effectiveness of
a number of design choices. (i) Effectiveness of view-identity
hybrid triplet sampling strategy: The triplet sampling strategy
described in Sec. IV-D is unique to our model because the 3D
shapes are sampled using identity but merged with view-based
sketch selection to compute identity-insensitive view attention
vectors to greatly increase the number of triplets, leading to
more effective model training. To verify this, we compare
with another two sampling strategies: a model employing the
conventional sampling strategy, termed as view insensitive
and identity sensitive triplet sampling or VIIST and a model
employing a stricter sampling strategy than VIIST, termed
as view sensitive and identity sensitive triplet sampling or
VSIST. Tab. II shows that the proposed sampling strategy
alone brings about 7% and 4% increase in acc.@1 respectively
for chair and lamp datasets when compared with VIIST,
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Fig. 5: Qualitative results. For each query sketch, the top 6 ranked 3D shapes in the gallery are shown in each row. See
details in text.

0° 15° 30° 45° 60° 75° 90° 105°

Fig. 6: Examples of attention distribution. We show 8 evenly
distributed view angles which the 3D shapes are projected
to. Each projection is colour coded with the corresponding
attention values indicating which view is attended more for

fusion. Warmer colour means higher attention value.

and about 1% and 3% increase in acc.@1 respectively for
chair and lamp datasets than VSIST. (ii) Effectiveness of
trainable temperature variable τ : The trainable temperature
variable, τ in Eq. 2 is an unconventional design. Typically
in a softmax formulation the temperature is either fixed or
tuned using a validation set. Tab. II shows that without
making the temperature trainable, the model is clearly worse
as the view attention is less effective. (iii) Effectiveness of
Siamese network: We implement a Heterogeneous alternative
of our network (termed Heterogeneous in Tab. II). It can be
seen that the Heterogeneous architecture yields much lower
performance, indicating that it suffers severely from overfitting
as the number of parameters doubles. This also echoes findings
from the related task of SBIR [10], which usually chooses
Siamese as well.
How about the synthetic edges rather than sketches? There
is dramatically domain gap between synthetic edges and real
free-hand sketches. Sketch is first abstracted based on human
visual understanding, and deformed in different levels as
drawn by free hand in a more flexible way; different annotators

might have different sketch drawing styles. Beyond, sketches
are collected by asking the volunteers to sketch the 3D shapes
according to the memory rather than tracing the edges. There-
fore the consistency is largely eliminated by the abstractness
and deformation of free-hand sketches. The result shown in
Tab. II, Synthetic that sketch are replaced by synthetic data
(canny edge detector on depth maps), again demonstrates the
satisfying performance of the proposed method, and also give
insights that there are large domain gap between real sketch
data and synthetic drawings.
Which Views are Attended to? In order to understand
why the cross-modal view attention module helps the FG-
SBSR model, some examples of view attention vector α are
visualized in Fig. 6. It can be seen clearly that our attention
module is able to identify the correct view angle of the sketch
and gives the biggest weight to corresponding 2D projection.
More importantly, other views are also given some weights,
with the nearby views given more weight than faraway views.
This is expected because nearby views are obviously visually
similar but not identical, thus offering some complementary
information. It is critical to note that this view attention is
dynamic, i.e., instance-dependent: exactly which nearby views
should be used and by what weighting factor, depends on the
object instance at hand, as well as how well the query sketch
is drawn. This is why, as shown in Tab. I, when the baseline
SBSVSR uses only one view, even though the view is selected
correctly in most cases, the performance is drastically worse.
Fusing multiple views and fusing them intelligently is thus the
key for learning an effective FG-SBSR model.

VI. CONCLUSION

We introduced the novel task of fine-grained instance-level
SBSR (FG-SBSR). This task is more challenging than the
well-studied category-level SBSR task, but is also more useful
in real-world applications. To enable FG-SBSR study, We
contributed two large-scale datasets. A deep joint embedding
learning based model was introduced with a novel cross-modal
view attention module. Extensive experiments have shown the
proposed model is superior to a number of baselines and the
introduced view attention module is the key reason for the
performance improvement.
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