
FontCraft: Multimodal Font Design Using Interactive Bayesian
Optimization

Yuki Tatsukawa
The University of Tokyo

Japan

I-Chao Shen
The University of Tokyo

Japan

Mustafa Doga Dogan
Adobe Research
Switzerland

Anran Qi
Centre Inria d’Université Côte d’Azur

France

Yuki Koyama
National Institute of Advanced

Industrial Science and Technology
Japan

Ariel Shamir
Reichman University

Israel

Takeo Igarashi
The University of Tokyo

Japan

a Construct a New Search Subspace
via Multimodal Reference

multimodal input
text

font �le

b Single Character Design
via Interactive Bayesian Optimization

image

c Style Propagation

propagate the user-designed style

d Vector Font Generation

svg otf

latent space
font style

specify

explore with a single slider

“I need a serif font for
my Halloween party,

make it gloomy and fun”

Figure 1: FontCraft allows non-expert users to create a font without pre-designed characters through four key steps. (a) Users

input multimodal data (text, images, font files) to construct a new search subspace. (b) Users repeatedly explore the search

subspace recommended by Bayesian optimization or constructed by multimodal reference using a slider. (c) Users can propagate

an edited character’s style to the remaining characters and refine any unsatisfactory characters (e.g., “K”) by repeating tasks (a)

and (b). (d) The system generates OpenType Font (OTF) file.

ABSTRACT

Creating new fonts requires a lot of human effort and professional
typographic knowledge. Despite the rapid advancements of au-
tomatic font generation models, existing methods require users

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’25, April 26-May 1, 2025, Yokohama, Japan

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1394-1/25/04
https://doi.org/10.1145/3706598.3713863

to prepare pre-designed characters with target styles using font-
editing software, which poses a problem for non-expert users. To
address this limitation, we propose FontCraft, a system that en-
ables font generation without relying on pre-designed characters.
Our approach integrates the exploration of a font-style latent space
with human-in-the-loop preferential Bayesian optimization and
multimodal references, facilitating efficient exploration and en-
hancing user control. Moreover, FontCraft allows users to revisit
previous designs, retracting their earlier choices in the preferential
Bayesian optimization process. Once users finish editing the style of
a selected character, they can propagate it to the remaining charac-
ters and further refine them as needed. The system then generates
a complete outline font in OpenType format. We evaluated the
effectiveness of FontCraft through a user study comparing it to

Author version

https://orcid.org/0009-0003-5128-8032
https://orcid.org/0000-0003-4201-3793
https://orcid.org/0000-0003-3983-1955
https://orcid.org/0000-0001-7532-3451
https://orcid.org/0000-0002-3978-1444
https://orcid.org/0000-0003-4201-3793
https://orcid.org/0000-0002-5495-6441
https://doi.org/10.1145/3706598.3713863

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Tatsukawa, et al.

a baseline interface. Results from both quantitative and qualitative
evaluations demonstrate that FontCraft enables non-expert users
to design fonts efficiently.

CCS CONCEPTS

• Human-centered computing→ Human computer interaction

(HCI).

KEYWORDS

font design, outline fonts, human-in-the-loop, latent space explo-
ration, novice user support tools, generative models, typography
tools
ACM Reference Format:

Yuki Tatsukawa, I-Chao Shen, Mustafa Doga Dogan, Anran Qi, Yuki Koyama,
Ariel Shamir, and Takeo Igarashi. 2025. FontCraft: Multimodal Font De-
sign Using Interactive Bayesian Optimization. In CHI Conference on Human

Factors in Computing Systems (CHI ’25), April 26-May 1, 2025, Yokohama,

Japan. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3706598.
3713863

1 INTRODUCTION

Designing a new font for posters, websites, and advertisement
banners is a challenging task, even for professional designers. It
requires a significant amount of repetitive manual effort because
the designers need to create a whole set of characters. For example,
a Roman font contains 62 characters including “A–Z”, “a–z”, and
“0–9”. Moreover, when it comes to other writing systems, for exam-
ple, it takes about 12 months for three to five experts to design a
GB18030-2000 Chinese font comprising 27,533 characters, according
to FounderType1, a Chinese font company. Additionally, font design
necessitates adherence to typography-specific criteria to ensure
that fonts maintain consistency, meaning all characters share a
uniform style.

To reduce the manual effort required for designing fonts, many
previous methods have leveraged generative models to generate
accurate and diverse fonts [13, 19, 20, 29–32, 34–37, 40, 41]. These
methods formulate font generation as a style transfer problem:
The style of predesigned character examples is transferred to the
target characters while preserving their structure. Although these
methods generate high-quality fonts, they still have a limitation
that hinders their usefulness for non-expert users in designing new
fonts. Specifically, they require users to create character examples
in desired font styles using font-editing software, which poses a
challenge for non-expert users. For instance, DualVector [20], one of
the latest Roman font generation models, requires 3–5 predesigned
character examples.

To tackle the challenges of font creation, we propose FontCraft,
a novel system that allows users to create new fonts without need-
ing to prepare specific character examples, making it especially
user-friendly for non-experts. As shown in Figure 1, users can cre-
ate desired fonts containing numerous characters by iteratively
adjusting a slider and providing multimodal references. Our system
allows them to explore within a subspace of the font style latent
space of a font generative model. The process begins with users
exploring the style for a single character, such as “A” or “z,” and
1https://www.foundertype.com/

then propagating a selected style to the remaining characters. Once
the style is propagated, users can choose an unsatisfactory charac-
ter (if any) and refine it using the same design procedure as they
did with the initial character. By repeating this process, users can
ultimately design a font that meets their preferences. Users then
obtain a complete outline font in OpenType format.

The core of our system is a novel latent space explorationmethod
that combines human-in-the-loop preferential Bayesian optimiza-
tion (PBO) and multimodal references. Our method has two main
technical contributions: multimodal-guided subspace and re-
tractable preference modeling, which addresses two key limita-
tions in existing human-in-the-loop PBO.

Human-in-the-loop PBO has been widely used to obtain the
optimal solution of user preference function for visual design pa-
rameter adjustment [17], photographic lighting design [39], and
exploring generative images and melodies [7, 42]. Similarly, in our
system, users explore the font style latent space of a font generation
model by selecting their preferred styles from candidates recom-
mended through Bayesian optimization. However, relying solely
on PBO in the design process can diminish users’ sense of agency,
creativity, and ownership [6]. To address this issue, we propose
to construct multimodal-guided subspaces, which enables users
to directly convey their preference to the PBO process using texts
and images. Specifically, we map user-provided multimodal refer-
ences to points in the search subspace by encoding fonts that are
similar to these references from an existing font database [22]. To
retrieve these similar fonts, our method leverages FontCLIP [28], a
typography visual-language model, and constructs a new search
subspace that incorporates the encoded points from the retrieved
fonts. By combining the multimodal-guided subspace with the sub-
space generated by the previous Bayesian optimizationmethod [17],
our approach enables users to design their desired fonts more effi-
ciently.

Additionally, previous PBO methods assume that users’ prefer-
ences remain consistent throughout the design process [16]. As a
result, users cannot retract their preferences during the font design
process. To overcome this limitation, we introduce a history inter-
face that supports retractable preference modeling. This interface
allows users to review their design history, revisit earlier states, and
restart from a specified past design. This feature is particularly valu-
able when users change their preferences during the design process,
freeing them from the limitations of an irretractable workflow.

Furthermore, we introduce a style propagation and refinement
feature, enabling users to achieve consistent styling across all char-
acters easily. Once users design a character with the desired style,
they can propagate that style to all other characters. They can then
fine-tune any characters that require additional adjustments until
satisfied. This feature not only simplifies the design process but
also ensures consistent styling throughout the entire font set.

To the best of our knowledge, FontCraft is the first system that
enables font design utilizing efficient font style exploration without
requiring pre-designed character examples, significantly lowering
the barrier to font design. To accomplish this, our system integrates
a human-in-the-loop Bayesian optimization method utilizing multi-
modal input with well-organized features such as history interface
and style propagation.

https://doi.org/10.1145/3706598.3713863
https://doi.org/10.1145/3706598.3713863
https://www.foundertype.com/

FontCraft: Multimodal Font Design Using Interactive Bayesian Optimization CHI ’25, April 26-May 1, 2025, Yokohama, Japan

We conducted a user study to evaluate how efficiently non-expert
users could design fonts using our system, both quantitatively and
qualitatively. The study compared our system to a baseline system
that solely relied on a single slider with basic PBO. The study aimed
to verify the advantages of key features in our proposed system,
including the integration of PBO with multimodal input and fea-
tures such as history interface for retractable preference modeling

and the combination of style propagation and refinement. In the user
study, participants without font design experience were tasked
with creating fonts using both our system and the baseline. We also
collected feedback from the participants to assess their satisfaction
with our system. Both quantitative and qualitative analyses of the
fonts created by participants revealed that our system produced
better font designs compared to the baseline. Survey responses also
confirmed that the proposed system features significantly enhanced
the efficiency of the font design process. Additionally, we demon-
strated that our system supports other writing systems, such as
Chinese, Japanese, and Korean (CJK), and is effective in practical
applications, including logo and advertisement design. These find-
ings show that our system is not only applicable to non-Roman
font design but also useful in practical, real-world design scenarios.

Contributions. To sum up, we make the following contributions:

• We present FontCraft, an interactive font design system that
simplifies the process of creating fonts across various writing
systems, making the design process accessible even to non-
experts.

• Wepropose amethod that combines human-in-the-loop Bayesian
optimization and multimodal references , enabling users to ex-
plore and interact with the multimodal-guided subspace.

• We introduce a history interface that allows users to retract
and update their preferences during the design process, which
cannot be done in previous human-in-the-loop PBO methods.

• Wedevelop an iterative style propagation and refinementmethod
to ensure consistent style throughout the entire font set.

2 RELATEDWORK

2.1 Automatic Font Generation

Font generation aims to create characters with a specific font style,
ultimately leading to the creation of new font libraries. Researchers
have proposed various methods for generating bitmap Roman fonts,
such as blending styles from template fonts [27], constructing a
font manifold [4], and manipulating attribute scores [33]. Addi-
tionally, recent studies have focused on synthesizing outline fonts
in vector format using deep generative networks [20, 29, 34–36].
These works tackle the challenges by representing character out-
lines as sequences of tokens [34, 35] or signed distance functions
(SDFs) [20, 36]. While these approaches successfully synthesize
vector fonts, non-expert users may find it difficult to use them di-
rectly, as they require pre-designed characters in target fonts or
manipulating various kinds of attribute scores [33].

On the other hand, creating Chinese, Japanese, and Korean (CJK)
fonts, which consist of a vast number of complex characters, re-
quires different approaches than generating Roman fonts. Some
methods attempt to generate CJK fonts by utilizing extracted meta-
data, such as radicals and strokes [18, 38, 42, 44]. However, these

approaches face significant challenges, particularly the need for
a large number of character examples. For example, generating a
font with 2,550 characters requires 522 character examples in the
desired font style [18].

To overcome these problems, recent deep learning-basedworks [5,
13, 23, 26, 31] treat the font generation problem as a style trans-
fer problem. However, these methods require labeled data, such
as radicals of characters. In contrast, several approaches aim to
train font-generation models without relying on domain knowl-
edge [13, 19, 37, 40, 41]. Among them, DG-Font [37] combines style
and content using adaptive instance normalization (AdaIN [12]),
a straightforward yet effective style transfer technique that aligns
the mean and variance of content with those of style. This method
requires only a few character examples in the desired font. More
recently, diffusion model-based methods [11] have achieved high-
quality and high-resolution font generation [8, 10, 19, 40].

In this paper, we utilize the extended DG-Font to generate fonts
without the need to prepare character examples. Although DG-Font

is not the latest model, its latent space is easier to explore than the
latent space of diffusion-based font-generative models [10, 19, 40].
Notably, our proposed system is compatible with other pretrained
font generative models that utilize a font style latent space.

2.2 Human-in-the-Loop Bayesian Optimization

Bayesian optimization [2, 25] is a widely used method for optimiz-
ing black-box functions. It is particularly useful for functions that
are expensive to evaluate because it aims to find the optimal value
with minimal iteration, which is achieved by selecting queries that
are most effective in terms of exploration and exploitation.

To reduce the number of expensive human evaluations, researchers
have tried to integrate Bayesian optimization with human-in-the-
loop systems [1, 3, 7, 14, 16, 17, 21, 43]. For instance, Koyama et al.
[17] propose a method called Sequential Line Search (SLS), which
finds the optimal value in the multi-dimensional space by tweaking
a one-dimensional slider that is easy for humans to perform. The
line explored by the one-dimensional slider connects the point ex-
pected to be optimal and the point at which the acquisition function
is maximized. Building on SLS, Zhou et al. [43] propose a framework
for generating melody compositions. Their framework transforms
the task of adjusting a one-dimensional slider into selecting the
most favorable candidate from a set of options. This adaptation en-
hanced user interaction while leveraging the strengths of Bayesian
optimization. Kadner et al. [14] introduce a human-in-the-loop sys-
tem for font generation, focusing on optimizing fonts for readability
through Bayesian optimization. In contrast, our work expands the
scope of font design by integrating SLS with multimodal references,
simplifying the creation of fonts for a variety of applications beyond
readability.

A notable limitation of human-in-the-loop Bayesian optimization
is that it tends to reduce user agency in the design process and de-
crease their sense of ownership over the outcomes [6]. Chan et al. [6]
suggest that enhancing users’ ability to express their ideas to the
optimizer can effectively improve both agency and ownership. Pre-
vious works have addressed this issue by enabling users to directly
incorporate preferences in various approaches, such as specify ar-
eas in the design space they wish to exclude [21], edit the generated

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Tatsukawa, et al.

melody [43] and images [7] directly. While these approaches allow
users to incorporate their preferences directly into the Bayesian
optimization process, they assume that users’ preferences are time-
invariant [16] and restrict users to a forward-directed design work-
flow, limiting flexibility in revisiting or re-evaluating earlier steps.

In contrast, our proposed method enables users to incorporate
their preferences into the Bayesian optimization process using
multimodal references, including text input. This multimodal inter-
active capability is a novel improvement over previous methods.
Additionally, we provide a user interface that effectively visualizes
the interaction history between the user and the system. This vi-
sualization allows users to easily understand the design history
and revisit or re-evaluate earlier points, freeing them from the
constraints of a strictly forward-directed optimization process.

3 FONTCRAFT SYSTEM OVERVIEW

3.1 System Architecture

The overall architecture of FontCraft, an effective system for font
design, consists of two main components: the user interface (UI)
and the font generative model. Users use UI to explore the font-
style latent space and select desired font styles. The font generative
model generates the bitmap representation of characters from latent
variables (see Section 4.1).

3.2 User Interface

The UI is designed to be simple and user-friendly, particularly for
users who have never designed fonts before. As shown in Figure 2,
our UI contains the character design area, themultimodal input area,
the character collection area, and the history area. Users interact
with the system by adjusting a slider or providing multimodal data,
and they can check real-time previews of generated fonts. This
interactive feedback loop allows users to iteratively refine their
font choices based on visual aesthetics. Each of these elements is
crucial in facilitating the font design process. We introduce them
in this subsection.

3.2.1 Character Design Area. The character design area is the most
frequently used element for exploration within the UI. It consists
of a single slider, an image viewer, and three control buttons. The
slider enables users to explore the one-dimensional latent subspace
determined by either Bayesian optimization or multimodal refer-
ence inputs (see Section 4.4). The image viewer shows the currently
focused character (“A” in Figure 2) in the selected style, rendered
in vector format. We generate the vector character in the following
steps. First, the bitmap character is generated by the font generative
model using the style latent vector selected by the handle on the
slider. Then, we reduced artifacts in the generated bitmap character
image by simply setting any pixel with a grayscale value above a
certain threshold to white. Finally, we converted the filtered bitmap
character into SVG format by tracing the outlines using the Potrace
algorithm [24].

The three control buttons, Reset, Update, and Update All,
serve specific functions:

• Reset: to clear any accumulated preferences in Bayesian op-
timization for a focused character and reinitialize it, allowing

users to start exploring the font style for that character from
scratch.

• Update: to submit the selected point on the slider as the cur-
rent user preference for a focused character, requesting the
Bayesian optimization process to recommend a new search
subspace for exploration in the next iteration.

• Update All: to propagate the style the user prefers for all
characters and request the Bayesian optimization process to
recommend the next search subspace.

3.2.2 Multimodal Input Area. The multimodal input area allows
users to provide multimodal references, including text, images,
and existing font files. These references are used to initialize or
customize the font style exploration process by constructing a new
search subspace. By providing specific references, users can directly
influence the system’s output, making it easier for them to design
desired fonts. We explain how to encode the multimodal references
into the font style latent space in Section 4.4.

3.2.3 Character Collection Area. The character collection area dis-
plays previews of the generated characters in vector format. Users
can zoom in on each character to inspect for any defects and select
a specific character to focus on. Once a character is selected, users
can refine its font style in the character design area.

3.2.4 History Area. The history area displays a sequence of user
inputs and system outputs, allowing users to track their design
progress. Users can select any previous output to revert to that
stage, which enables them to undo actions and restart the font
design process from a specific point. This feature allows users to
retract undesired preferences and update their preferences during
the design process.

4 METHOD

4.1 Preliminary of Font Generative Model

We use DG-Font [37] as our font generative model. This model
takes a style image 𝐼𝑆 representing the desired font style, and a
content image 𝐼𝐶 representing the desired character, as input. It then
generates the character image that represents the desired character
in the desired font style as the output. As illustrated in Figure 3,
the architecture of DG-Font is an encoder-decoder model with two
encoders: a style encoder 𝐸𝑆 and a content encoder 𝐸𝐶 , along with
a content decoder 𝐺𝐶 . The generation process starts by extracting
the style latent vector from the style image using the style encoder
and the content latent vector from the content image. Then, the
content decoder takes both the style and content latent vectors
as input to generate the desired font image 𝐼 , which maintains a
similar style to the style image while preserving the structure of the
content image. Overall, the generation process during the training
process can be formulated as:

𝒛𝑆 = 𝐸𝑆 (𝐼𝑆), 𝒛𝐶 = 𝐸𝐶 (𝐼𝐶), 𝐼 = 𝐺𝐶 (𝒛𝑆 , 𝒛𝐶) . (1)

In our work, we use an enhanced version of DG-Font, which in-
cludes an additional content discriminator. Notably, our system
(FontCraft) only needs the pretrained model to generate new
fonts instead of training a model from the beginning. We will pro-
vide the details of this additional model architecture and training
process in the supplemental material.

FontCraft: Multimodal Font Design Using Interactive Bayesian Optimization CHI ’25, April 26-May 1, 2025, Yokohama, Japan

Character design area

History aread

a

b Multimodal input area

Character collection areac

a

b

cd

Figure 2: FontCraft UI. Users manipulate the slider in (a) the character design area to explore the line search subspace

provided by the system. They can also input multimodal references using (b) the multimodal input area. They can obtain a

new recommendation by pressing the Update button. Once users are satisfied with the current style of the focused character,

they can propagate its style to all other characters by pressing the Update All button, and the results can be viewed in (c) the

character collection area. Optionally, users can select another character and further refine it. (d) The history area shows the

sequence of user inputs and system outputs, enabling users to easily track their exploration history and revert to a specific

checkpoint if needed.

In the rest of the paper, if we need to specify the content image
𝐼𝐶 or its latent vector 𝒛𝐶 for a specific character such as “A”, we
will denote it as 𝐼𝐶 [“A”] 𝒛𝐶 [“A”]. Otherwise, we will use 𝐼𝐶 or 𝒛𝐶
for abbreviation. This also applied to the generated image 𝐼 .

style character

content character

style encoder

content encoder

style latent space

content decoder generate bitmap
character

Figure 3: Overview of DG-Font. DG-Font is an encoder-

decoder model that takes a character image representing

style and a character image representing content as input,

and outputs a character image that combines the content

with the specified style. During font designing in our system,

users use our human-in-the-loop optimization to explore the

style latent space of the style encoder. Please find the detailed

architecture of the encoder and decoder in the supplemental

material.

4.2 Preliminary of FontCLIP

To incorporate multimodal input when designing fonts, we use
FontCLIP [28] to extract typographical features from both text
and image input. FontCLIP is a visual-language model that bridges
the semantic understanding of a large vision-language model with
typographical knowledge. It consists of a text encoder and a visual
encoder and builds a joint latent space that encodes typographical
knowledge. In this joint latent space, similar font images and text
prompts will have similar latent vectors. For example, a bold font
will have a similar latent vector to the text prompt “This is a strong
and thick font” compared to the text prompt “This is a thin font”.
Therefore, the FontCLIP latent vector can be used to retrieve similar
fonts using text or image input. In our system, we utilize both the
FontCLIP text encoder and visual encoder to extract a latent vector
from the multimodal input to customize the linear subspace.

4.3 Preliminary of Human-in-the-Loop

Bayesian Optimization

4.3.1 Problem Formulation. Human-in-the-loop optimization is
a computational approach used to solve parameter optimization
problems involving human evaluators in its iterative algorithm. It

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Tatsukawa, et al.

is commonly used to support design tasks that involve generat-
ing visual content defined by a set of parameters 𝒙 , with the aim
of achieving certain subjective design goals. Specifically, we can
formulate such optimization problem as:

𝒙∗ = arg max
𝒙∈X

𝑓 (𝒙), (2)

where X is the search space, and 𝑓 : X → R is the goodness func-
tion to evaluate a subjective design goal (e.g., the aesthetics of the
current design). We aim to find the optimal value 𝒙∗ with the fewest
trials because evaluating 𝑓 (·) is costly. However, solving Equation 2
using traditional Bayesian optimization (BO) might not be suitable
for many design tasks. This is because it is often difficult to assign
an exact value to a sample, whereas comparing a couple of samples
and choosing the preferred one is more intuitive. For example, it
is hard for users to give a score to a font individually, but easier
for them to choose the preferred font from a set of candidates.
Therefore, in this work, we choose to use preferential Bayesian
optimization (PBO) [15], which is a variant of Bayesian optimiza-
tion (BO) that runs with relative preferential data. In particular, we
build our method upon Sequential Line Search (SLS) [17], a PBO
method that constructs a sequence of linear subspaces that leads to
the optimal parameters that match the user’s need.

4.3.2 Sequential Line Search (SLS). With SLS, the user can search
for his/her preference by adjusting a slider. At each iteration of the
optimization, SLS constructs a linear subspace using the current-
best position 𝒙+ and the best-expected-improving position 𝒙EI.
Suppose we already have 𝑡 observed response so far, then the next
linear subspace S𝑡+1 is constructing by connecting:

𝒙EI𝑡 = arg max
𝒙∈X

𝑎EI (𝒙 ;D𝑡) (3)

𝒙+𝑡 = arg max
𝒙∈{𝒙𝑖 }𝑁𝑡

𝑖=1

𝜇𝑡 (𝒙)

where {𝒙𝑖 }𝑁𝑡

𝑖=1 denotes the set of points observed so far, 𝜇𝑡 and
𝑎EI are the predicted mean function and the acquisition function
calculated from the current data. We use the expected improvement
(EI) criterion as the acquisition function to choose the next sampling
point that is likely to optimize the function 𝑓 and at the same time
its evaluation is more informative:

𝑎EI (𝒙 ;D) = E
[
max

{
𝑓 (𝒙) − 𝑓 +, 0

}]
. (4)

After the 𝑡-th iteration, we suppose that we obtained a set of 𝑡
single slider responses, which is represented as

D𝑡 =

{
𝒙chosen𝑖 >

{
𝒙+𝑖−1, 𝒙

EI
𝑖−1

}}𝑡
𝑖=1

, (5)

where 𝒙chosen
𝑖

represent the position chosen by the user at the 𝑡-th
iteration.

Let 𝑓𝑖 be the goodness function value at a data point 𝒙𝑖 , i.e.,
𝑓𝑖 = 𝑓 (𝒙𝑖), and 𝒇 be the concatenation of the goodness values of
all data points:

𝒇 = [𝑓1, 𝑓2, . . . , 𝑓𝑁] . (6)

Under the assumption of Gaussian process (GP) prior on 𝑓 , we use
𝜽 to represent the hyperparameters of the multivariate Gaussian

BO subspace only

a User exploration process

b multimodal-guided subspace onlyc combination of bothd

Figure 4: Exploration of the font style latent space using

a single slider. (a) Users explore a one-dimensional search

subspace within the font style latent space using a single

slider. At each iteration, users choose a point in the latent

subspace and submit it as their current preference 𝒛chosen𝑡 .

After a couple of iterations, users gradually converge to their

desired font style. The overall exploration process, users can

explore (b) BO subspace only, (c)multimodal-guided subspace

only, and (d) combination of both.

distribution. Since the goodness values 𝒇 and the hyperparameters
𝜽 are correlated, we infer 𝒇 and 𝜽 jointly by using MAP estimation:

(𝒇MAP, 𝜽MAP) = arg max
(𝒇 ,𝜽)

𝑝 (𝒇 , 𝜽 | D)

= arg max
(𝒇 ,𝜽)

𝑝 (D | 𝒇 , 𝜽)𝑝 (𝒇 | 𝜽)𝑝 (𝜽) . (7)

Once 𝒇MAP and 𝜽MAP have been estimated, we can compute
𝜇 (·), 𝜎 (·), and 𝑎EI (·) in order to construct the next slider subspace
S𝑡+1. We only describe the minimum concept of how SLS constructs
the linear subspace to optimize the function 𝑓 for understanding
how we incorporate it in the style latent space of a font generative
model and multimodal input. For more details, please refer to the
supplemental material.

4.4 Multimodal Bayesian Optimization for Font

Generation

Specifically, following Equation 2, the objective function for design-
ing a character can be formulated as:

𝒛∗ = arg max
𝒛∈Z

𝑓 (𝐺 (𝒛)), (8)

where 𝒛 ∈ Z is the style latent vector of the font generative model,
which is the search space X in our problem setting. Moreover, 𝐺
is the decoder of the font generative model, and 𝑓 : Z → R is the
user preference function that measures how good the currently
generated character is perceived by the user. To solve Equation 8
and obtain the desired font, users can perform three different ac-
tions: explore the font style latent space, retract previous preferences,
and propagate style to other characters at each iteration.

4.4.1 Action 1: Explore the Font Style Latent Space. The primary
task for users is to explore the one-dimensional font-style search
subspace using a slider. By repeating the slide manipulation, users
gradually converge on a point that aligns with their desired font
style as illustrated in Figure 4. This subspace is constructed by the

FontCraft: Multimodal Font Design Using Interactive Bayesian Optimization CHI ’25, April 26-May 1, 2025, Yokohama, Japan

system in two ways: one solely follows the SLS method and another
utilizes multimodal references. Note that, regardless of these two
different approaches to constructing the subspace, the interaction
(i.e., manipulating the slider and submitting a preferred point to
the system) remains consistent.

Constructing a SLS subspace. Using the SLS method outlined
in Section 4.3.2, our system constructs a linear subspace S𝑡 by con-
necting the current best point (𝒛+𝑡) and the point that maximizes
the acquisition function (𝒛EI𝑡) using Equation 3 at the 𝑡-th itera-
tion. Then, users can choose a style latent vector 𝒛 using the slider
within S𝑡 and view the generated character 𝐺 (𝒛). Once satisfied,
users submit their preferred point on the slider 𝒛chosen𝑡 by click-
ing the Update or Update all button and request the system to
construct a new linear subspace S𝑡+1 for the (𝑡 + 1)-th iteration
using Equation 7.

Constructing a multimodal-guided subspace. While exploration
with a single slider is useful, the linear subspace determined solely
by Bayesian optimization sometimes fails to capture user prefer-
ences effectively, which leads to an increasing number of iterations
and potentially causes frustration and a diminished sense of agency.
To address this issue, we allow users to intervene in the linear sub-
space construction by providing multimodal references at any itera-
tion. At (𝑡 + 1)-th iteration, instead of exploring the linear subspace
S𝑡+1 = (𝒛+𝑡 , 𝒛EI𝑡) constructed solely by Bayesian optimization, the
user explores the multimodal-guided subspace: S𝑚𝑚

𝑡+1 = (𝒛+𝑡 , 𝒛𝑚𝑚
𝑡).

Here, 𝒛𝑚𝑚
𝑡 is the style latent vector obtained by retrieving the most

similar fonts to the multimodal reference provided at (𝑡 + 1)-th iter-
ation from a font database containing 1,169 Roman fonts collected
by O’Donovan et al. [22]. Specifically, we retrieve 𝑛 fonts and use
the mean of their latent vectors as 𝒛𝑚𝑚

𝑡 (we use 𝑛 = 5 in our imple-
mentation). Once the user is satisfied with the current generated
character, the slider response: (𝒛chosen

𝑡+1 , 𝒛+𝑡 , 𝒛
𝑚𝑚
𝑡) will be recorded

in D𝑡+1 (Equation 5) and used for constructing the subspace in the
future iteration. This means that all multimodal references provided
until iteration 𝑡 will affect the subspace constructed at (𝑡 + 1)-th
iteration. In our current implementation, at each iteration, users
can provide only a single multimodal reference, and we construct a
new search subspace by connecting the current chosen point and
the latent vector of the provided multimodal reference. At 0-th
iteration, we construct the initial linear subspace S0 = (𝒛init, 𝒛𝑚𝑚

0),
where 𝒛init represents the style latent vector of a commonly used
font (we use “IPAex gothic” font in our implementation). Note that
the multimodal references are only used to construct the linear
subspace for the user to explore, not being directly used to infer
the user preferences.r

To construct a multimodal subspace with the user-provided mul-
timodal reference, our system identifies a suitable font in our font
database that corresponds to the input text or image. For text input,
the system first extracts font attributes such as “formal,” “italic,”
and “happy” using a Large Language Model (LLM). The LLM se-
lects relevant font attributes based on the given text. We utilize 37
types of font attributes compiled by O’Donovan et al. [22] (see the
supplemental material for more details). Once the font attributes
are extracted, the system obtains the feature vector of these text at-
tributes using the text encoder of FontCLIP [28] and retrieves fonts

from our font database based on feature similarity. The retrieved
fonts are used as the most suitable options, and the mean of their
style latent vectors 𝒛𝑚𝑚 is obtained using the style encoder 𝐸𝑆 .

For the text-rendered image reference, our system retrieves its
most similar font in the font database using the FontCLIP feature.
Similarly, we then project the retrieved font image into the style
latent space using 𝐸𝑆 and obtain 𝒛𝑚𝑚 . Finally, for font file input,
our system directly uses the provided font as the suitable font and
projects it into the latent space, similar to the process for text and
image inputs. We illustrate how to obtain the style latent vector of
the multimodal references in Figure 5(c).

4.4.2 Action 2: Retract Previous Preferences. At each iteration, if the
user is not satisfied with the current design and the recommended
candidates, they can choose to retract previous preferences. Specifi-
cally, at (𝑡 + 1)-th iteration, if the user wishes to retract the last two
slider manipulations, then the last two slider responses stored inD𝑡

will be discarded. Then, if the user opts to explore a new subspace
by providing a new multimodal reference, they will then explore
the subspace S𝑚𝑚

𝑡−1 = (𝒛+
𝑡−2, 𝒛

𝑚𝑚
𝑡−2). Otherwise, the user will explore

a subspace constructed using SLS solely: S𝑡−1 = (𝒛+
𝑡−2, 𝒛

EI
𝑡−2). By

retracting previous preferences, users can update their preferences
during the design process.

4.4.3 Action 3: Propagate Style to Other Characters. Once the user
is satisfied with the design of the focused character (e.g., “A”) and
obtains the style latent vector 𝒛∗

𝑆
, our system can propagate the

style to all other characters and finish designing a single character.
Specifically, to propagate the style vector to character “B”:

𝐼 [“B”] = 𝐺𝐶 (𝒛∗𝑆 [“A”], 𝒛𝐶 [“B”]). (9)

Next, users can check all characters with the propagated styles. If
they are unsatisfied with the result of another character, they can
perform action 1 or action 2 to design that character. If they are
satisfied, the resulting font is exported as an outline font.

5 EVALUATION

5.1 Simulated Evaluation of Multimodal

Reference

To quantitatively evaluate how multimodal reference can help our
human-in-the-loop optimization, we designed a simulation test to
compare two linear subspace initialization methods: using multi-
modal reference and random fonts.

5.1.1 Procedure. We illustrate the procedure of the simulation test
in Figure 6. Given a base font character (e.g., “A”), the goal of the
simulation test is to resemble the target font character (Figure 6(d))
by exploring the style latent space through optimization. Specifi-
cally, we simulate user selections using the following process. At
each iteration, our method selects a point in the slider’s search sub-
space with the minimum perceptual metric (we use DreamSim [9])
against the target font character. Then, the selected point is used
to request Bayesian optimization to recommend the next linear
subspace. We iterate this process to observe the convergence of the
optimization progress using both initialization methods.

For initializing using multimodal reference, we test text input
and font file input in this experiment. For the text input, we create

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Tatsukawa, et al.

a

b

cinitial point

user preference

input text font attributes

input image

input font �le

LLM

FontCLIP
visual

encoder

FontCLIP
text

encoder

font“I need a suitable font for
a presentation slide of a
conference presentation.”

“formal, legible,
modern, strong,

not serif”

retrieval

font
retrieval

in the last iteration
or

Figure 5: Constructing linear subspaces using multimodal references. (a) At the start of the font design process using our

proposed method, the user inputs text, an image, or a font file. The system encodes this input into a font style latent vector and

initializes the line search space by connecting the latent vector and a fixed point predetermined by the system. (b) Additionally,

the user can introduce multimodal inputs at any stage of the design process. When the user provides new input, the system

generates a new line search subspace by connecting the last user preference point with the newly encoded point. (c) Our system

encodes multimodal input into the style latent space by leveraging LLM and FontCLIP text and visual encoders.

a descriptive text that characterizes the target font and use it to
initialize the search subspace. For font file input, we manually select
a font from candidate fonts that closely resembles the target font
and use it to initialize the search subspace. Finally, for the baseline
method, we choose a font randomly from our font database and
use it to construct the initial search subspace.

b Using random font

a Using multimodal input

c Automatic character design Distance calculationd

Generated
character character

Target font

Calculate

with a single slider

distance

“bold, italic, and sans-serif font”
text input

font �le input:
similar font to the target font

font �le input:
randomly sampled font

Figure 6: Evaluation of linear subspace initialization meth-

ods. We compared two initializationmethods for exploration

with Bayesian optimization. (a) One method uses input text

or a similar font file for initialization, while (b) the other

initialize method uses a randomly sampled font from a font

database. After initialization, both methods follow the same

automatic exploration process (c), where the optimal point

on the single linear subspace is repeatedly identified and

submitted to the system. In each iteration, we measure the

distance between the generated character and the target font

character to identify the optimal point, as shown in (d). Note

that we use the bitmap format of the character for distance

calculation, without vectorizing it.

We conducted this experiment using the character “A” for 10
different target fonts, randomly selected from our font database.
We collected 12 kinds of fonts from which we chose a similar font
to each target font for the font file input. For each target font, we
choose the most similar font out of the 12 candidate fonts. The 12
candidate fonts consist of two popular font families, Roboto and
NotoSerif, and each font family has six variations: Light, Light Italic,
Regular, Regular Italic, Bold, and Bold Italic. This selection simulated
a scenario where users start with popular fonts and design new
fonts based on one of these similar candidates. For each target
fonts, the optimization process includes 10 iterations of Bayesian
optimization.

5.1.2 Results. In Figure 7, we show the mean and standard devia-
tion of the distances between the optimized results and all target
fonts. We can observe that the optimization processes with text and
font file references converge to a lower DreamSim distance to the
target font character compared to those initialized with a randomly
selected font. These results indicate that using multimodal refer-
ences for initializing the human-in-the-loop optimization leads to
more effective exploration than random initialization.

5.2 User Study

To evaluate the effectiveness of our proposed system, we conducted
a user study in which participants were asked to design fonts using
both a baseline system and our system. The goals of this study were
threefold:

FontCraft: Multimodal Font Design Using Interactive Bayesian Optimization CHI ’25, April 26-May 1, 2025, Yokohama, Japan

a text input vs. random input b font input vs. random input

di
st
an
ce

di
st
an
ce

iteration iteration

Figure 7: Convergence comparison between two initialization

methods. The figure illustrates how the DreamSim distance

between the designed font character and the target font char-

acter converges during exploration with human-in-the-loop

optimization. The optimization processes initialized by text

font references (orange) obtain better results compared to

processes initialized by random font (blue).

• to assess the overall effectiveness of our system, including the
integration of Bayesian optimization, multimodal reference,
history interface, and style propagation.

• to compare the fonts designed by participants both quali-
tatively and quantitatively against those created using the
baseline system.

• to gather qualitative feedback on the user experience with
our system.

5.2.1 Comparison Systems. For the user study, we added a special
feature called Font Palette to our proposed system. By clicking
the Font Palette button, users can view a visualization of the 12
popular fonts described in Section 5.1 and select one to input as
their preference, simplifying the process of inputting a font file.
Additionally, we removed the Upload Image and Upload Font
buttons from the UI in Figure 2 for simplicity. As a result, users
can now easily input text and font files using the Text and Font
Palette buttons, respectively.

To assess the effectiveness of the multimodal reference and style
propagation features in our system, we created a baseline system
that includes only a single slider, as illustrated in Figure 8. In this
baseline system, users can explore the font style latent space solely
by adjusting the slider, guided by the Bayesian optimization process.
Unlike our proposed system, the baseline’s one-dimensional search
space is initialized by connecting a fixed point with a randomly
initialized point. The fixed point corresponds to the style of the
IPAex Gothic font, as described in Section 5.1. If users encounter
difficulties during exploration, they can reset their preference his-
tory in the Bayesian optimization process and restart from a newly
randomized search subspace. Additionally, this baseline method
lacks a style propagation function, requiring users to design each
character individually.

5.2.2 Procedure. We recruited ten people for the user study. Each
participant was presented with a target font and asked to design
three characters, “A”, “B”, and “C” that closely match the target
font using both FontCraft and the baseline system. For this user
study, we prepared two target fonts, Font 1 and Font 2. Each font
design session continued until one of the following conditions
was met: (1) the participant was satisfied with the quality of the

b Character collection areaa Character design area

Figure 8: User interface of the baseline system. In the (a)

character design area, users use a slider to explore the one-

dimensional subspace within the font style latent space rec-

ommended by Bayesian optimization. By clicking the Re-

set button, users can reset their preference history in the

Bayesian optimization process, randomly reinitializing the

search subspace. The users can check the characters that they

have already designed are displayed in the (b) character col-

lection area.

characters they designed, (2) they felt that further improvement
was difficult, or (3) the 7-minute time limit was reached. The user
study followed this sequence: (Tutorial of FontCraft → Font 1
with FontCraft→ Font 2 with FontCraft→ Tutorial of baseline
→ Font 1 with baseline → Font 2 with baseline → Survey). The
order of using FontCraft and the baseline system was randomized
for each participant. After the font design sessions, participants
were asked to complete a questionnaire that validated our system.
The entire user study took approximately 60 minutes, with each
tutorial lasting 10 minutes, each font design session 7 minutes, and
the survey 10 minutes.

5.2.3 Results and Discussion. We compared the designed fonts us-
ing our system and the baseline system both quantitatively and
qualitatively. For the quantitative evaluation, we calculated the
distance between the target font characters and the designed char-
acters in the DreamSim latent space. As shown in Table 1(a), the
characters designed with our system closely resembled the target
font characters compared to those designed with the baseline sys-
tem. Additionally, we measured the style consistency between all
characters designed by each participant by calculating the mean
distance between the characters “A”, “B”, and “C” in the DreamSim

latent space. As shown in Table 1(b), the distance is smaller when
using our system to the baseline system, indicating our system
enables more style-consistent character design. In Figure 9, we
showed the characters designed by all participants (P1–P10). For
Font 1, the “A” characters designed by P2, P3, P4, P6, and P8 using
our system closely matched the slanted style of the target “A,” while
they failed to design the slanted style using the baseline system,
indicating that participants effectively captured the italic feature
through multimodal reference. On the other hand, characters de-
signed by P1, P2, P3, P4, P5, P8, and P10 using the baseline system
showed inconsistencies in style within the same font (e.g., varia-
tions in size, height, and weight). In contrast, characters designed
with our system exhibited greater consistency, suggesting that style
propagation helped create more cohesive designs.

Next, we evaluated participant feedback to validate the effec-
tiveness of our system. We asked questions about the functions in
our system, including slider operation, multimodal reference, style

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Tatsukawa, et al.

Font 1 Font 2
Target

font

P1

P2

P3

P4

baseline Ours baseline Ours

P5

P6

P7

P8

P9

P10

Figure 9: Characters designed by user study participants. Our

system enables users to design characters that are more sim-

ilar to the target font characters and maintain higher consis-

tency between each other. In the case of Font 1, participants

successfully designed all characters with the slant style us-

ing our system, while some participants failed to create the

slant style for “A” using the baseline system. For Font 2, all

participants designed characters with consistent styles using

our system, whereas the styles of characters designed using

the baseline system were inconsistent.

propagation, and history interface. When we asked the question
“Were you satisfied with the designed characters?”, seven out of the
ten participants answered yes, while P2 and P10 commented neu-
tral, and P9 expressed no. P9 noted that he observed distortions
in the generated characters and felt the system was not good at
generating straight lines. In response to the question “Do you think

you were able to design fonts easily with the system?”, all ten partici-
pants answered yes, demonstrating the system’s effectiveness in
enabling non-expert users to design fonts with ease.

In response to the question “Do you think you were able to effec-

tively use the slider operation for font design?”, nine participants an-
swered yes. P4, who answered no, expressed dissatisfaction, stating
that while the combination of slider manipulation and multimodal
reference was effective, using only the slider and repeatedly click-
ing the Update button sometimes resulted in a linear subspace that
excluded the desired character style. P4 emphasized the importance
of using multimodal reference at the right moments to avoid un-
satisfactory suggestions and stated that relying solely on the slider
was not effective. P4 also highlighted that the history interface was
useful for reverting to a previous point, leading to the escape of an
undesirable search subspace suggested by the system. P4’s feedback
reflects the findings suggested in Chan et al. [6], which indicate
that designers working with BO may experience a loss of agency.
In contrast, our method provides users with a way to contribute

(a) Target font similarity ↓

Font 1 Font 2

Baseline 0.1680 0.1416
FontCraft 0.1591 0.1355

(b) Designed character consistency ↓

Font 1 Font 2

Baseline 0.3303 0.2893
FontCraft 0.2983 0.2793

Table 1: (a)We calculated the distance between the characters

designed by the participants and the target font characters.

Each value represents the mean distance across the 12 char-
acters (“A”, “B”, “C” designed by the four participants). The

characters designed using our system are closer to the ground

truth compared to those with the baseline system. (b) We

measured the character consistency between the characters

“A”, “B”, and “C” designed by each participant. Each value

represents the mean distance across the three characters de-

signed by each participant. The distance among the three

characters designed using our system is smaller than that

with the baseline system, which indicates our system enables

more style-consistent character design. (↓ denotes the lower

values are better and we highlight the best result for each

target font.)

concrete ideas that guide the BO process, thereby helping them
regain a sense of agency.

In response to the question, “Do you think you were able to effec-

tively use text input?”, eight of ten participants answered yes. P1, P2,
P4, P6, P7, P9, and P10 found text input helpful for making broad
changes, such as adjusting weight or slant, but not for fine-tuning
details or specifying complicated characteristics. Additionally, P1,
P6, and P7 mentioned that understanding typographical terms like
“bold” and “italic” was necessary. This feedback indicates that while
text input is useful for exploring rough font styles, it has limitations
in designing font details and requires some typographic knowledge.

Regarding the question, “Do you think you were able to effectively
use the similar fonts provided by font palette?”, eight of ten answered
yes. P4 and P7 commented that the font palette is particularly
helpful when it is difficult to describe the desired font style in
texts. P8, P9, and P10 stated that initializing the search subspace
using the font palette function allowed them to begin the design
task more smoothly compared to the baseline system. However,
P5 expressed dissatisfaction, stating that the style of the character
generated did not perfectly align with the font they selected from
the font palette. This discrepancy, caused by the encoding-decoding
process of the font generative model, could lead to confusion among
users. To address this issue, it is important to communicate to users
that the generated characters may not always perfectly match the
multimodal reference. Additionally, we anticipate that newer font
generative models could help mitigate this discrepancy. It is worth
emphasizing that our proposed system is compatible with any font
generative model, provided an efficient font style latent space can
be established within it. On the other hand, P2 explained that he
did not use the font palette because he preferred to describe the
target font style using text input. This feedback suggests that using
similar font files and text input complement each other.

FontCraft: Multimodal Font Design Using Interactive Bayesian Optimization CHI ’25, April 26-May 1, 2025, Yokohama, Japan

When asked, “Do you think you were able to effectively use the

Update all button?”, nine participants responded positively, with
eight participants noting that it was more convenient than design-
ing each character individually. P10, who answered no, expressed
dissatisfaction, commenting that it would be more convenient if
users could toggle between adjusting either all characters at once
or individually. In particular, he felt that having a feature to switch
to individual adjustments is crucial during the fine-tuning stage.
We focus on the simplicity of the UI in this user study and this indi-
vidual adjustments function is effective especially when designing
many characters like all Roman characters.

In response to the question, “Do you feel that you could design

characters with a sense of agency using our system?”, posed only
to P5–P10, all six participants responded affirmatively. P7 and P10
noted that in the baseline system, the line search space was initial-
ized randomly, making the process feel highly dependent on luck.
In contrast, they appreciated that our proposed system allowed
them to control the initialization by specifying their preferences
through multimodal references. This insight aligns with the find-
ings in Section 5.1, which show the initialization using multimodal
references leads to better results compared to random initialization.
Additionally, P9 commented that he felt he could convey his inten-
tions to the system by inputting texts. These insights indicate that
our system, leveraging multimodal references, provides users with
a greater sense of agency compared to the baseline system.

Seven participants highlighted the usefulness of the history in-
terface during the design process. P5 remarked that the feature was
particularly effective, as there were times when he felt a previous
font was better. In such cases, the history interface allowed him to
revisit and continue from that point, saving effort. He also noted
the inconvenience of the baseline system lacking this feature. P6
commented that comparing the current font displayed on the slider
with previously created fonts helped him determine which one
aligned more closely with his intended design. He also said that
in the baseline system, he found it challenging to reset after creat-
ing a satisfactory font. In contrast, our system’s history interface
made him feel more confident about updating or resetting, as it
allowed him to aim for even better results without hesitation. This
exemplifies that the history interface is useful not only for storing
the designed characters and enabling the users to go back to a past
point but also for making them advance the design process as boldly
as they want. It also indicates that the history interface reduces
stress and increases freedom and creativity in the design task.

Overall, the feedback suggests that the proposed functions in
our system effectively support font design for different participants
based on their design preferences and familiarity with typography.

6 APPLICATION DEMONSTRATIONS

In this section, we will show a case study where participants are
required to design characters in more realistic situations and the
adaptation to another writing system rather than Roman characters.

6.1 Designing Fonts for Graphic Design

Purposes

In practical usage, it is important to evaluate whether our system
can support font design for graphic design purposes, such as logo

design or advertisement design, as noted by professional designers
in Section 7. To explore this, we asked participants to create suitable
characters for specific design contexts.

To begin with the conclusion, from the feedback, we observed
that participants using our system did not initially have a clear
vision of the font they wanted. However, as they explored differ-
ent font styles, they drew inspiration from the designs they en-
countered, ultimately creating their own unique characters. While
participants occasionally struggled with fine adjustments, such as
correcting distorted lines, they generally felt they were able to cre-
ate fonts that aligned with their intended concepts. In the following
sections, we present two design scenarios: conference logo design
and advertisement poster design. In the conference logo task, four
participants (P11-P14) created characters for a logo, demonstrat-
ing a variety of font styles using our system. In the advertisement
poster task, another six participants (P15-P20) designed characters
for different posters, tailoring their fonts to the target concepts.

6.1.1 Design a Conference Logo. In this experiment, participants
with no prior font design experience were tasked with designing a
conference logo. Specifically, they were asked to create the charac-
ters “CHI 2025” to complement the cherry blossom motif in the con-
ference logo. After receiving an introduction to using our system,
participants completed the task, and their feedback was collected.
During the design process, participants were only shown the cherry
blossom logo and were not aware of the characters in the official
conference logo. As shown in Figure 10, the designs varied among
participants. P11 noted that her designed characters complemented
the cherry blossom logo, highlighting that her favorite aspect was
the fading central lines in “H” and “5.” This fading part appeared
accidentally but complements the logo from her point of view, so
she adopted it. She also attempted to replicate this effect in “2,” but
it was unsuccessful. P12 said that he thought a decent and calm font
was suitable for the conference logo and tried to make such a font.
He also commented that the font he designed was 90 out of 100 in
terms of satisfaction, though his attempt to make “I” more straight
was not successful. P13 commented that he aimed to create a cute
font inspired by the Japanese subculture, opting for a bold and
rounded design. For the initial step, he input the text, “I want a cute
and thick font" and found that the system performed as he hoped.
He also noted that the slider was effective in fine-tuning character
details and eliminating unwanted distortions. He was proud of the
font he designed and believed it could be used in real-world appli-
cations, as the style of each character was well aligned. P14 noted
that he thought a thin and brush-style font fitted the Japanese-style
logo and tried to make it. He found multimodal input effective for
the early stages of rough font design but felt it was less suitable for
detailed exploration, ultimately relying on slider manipulation to
refine the characters. He was confident with the quality except for
the noise and distortion in the designed characters.

6.1.2 Design Advertisement Posters. This demonstration shows
font design for advertisement posters using our system, as illus-
trated in Figure 11. During the design process, participants (P15-
P20), who were introduced to the use of our system, were given a
scenario and shown only the background image, with the task of
creating characters that matched the visual context. P15 and P16,
both familiar with CJK writing systems, designed characters for an

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Tatsukawa, et al.

P11 P12 P13 P14

Figure 10: Designed characters for the conference logo. Four

participants designed the characters for the conference logo.

They designed a diverse range of fonts based on their unique

sensibilities.

autumn foliage festival. P5 rated his design 9 out of 10, expressing
satisfaction with the traditional and formal font style he aimed to
achieve. He efficiently initialized the search space by inputting the
text “yu-mincho, serif” (with “yu-mincho” being one of the most
popular CJK fonts). P16 commented that he envisioned a calm and
warm font for the festival and was pleased with the result. He noted
that their initial idea was simply based on the keyword “warm,”
which he input into the system. As he explored various styles, he
gradually refined his design and reached a point of satisfaction.
P17, who designed the summer sale poster, aimed for a thin and
refreshing font. He observed elements in the background image
such as the central white line, the seagull’s wings, and the wave’s
border, and decided that the character weight should align with
these features. By adjusting the slider, he was able to find a suitable
font weight, though he expressed some dissatisfaction with the
distortion of the top horizontal bar in the letter “E.”

P18, tasked with designing a Halloween poster, felt that a twisted
font suited the Halloween theme. She also believed a cute, handwrit-
ten style complemented the surrounding elements like the pumpkin,
house, and bat, and was satisfied with the bold characters she cre-
ated. She began by inputting a bold and italic font into the system,
then continued refining the design using only the slider suggested
by the Bayesian optimization process. She expressed confidence in
using the system, despite having no prior font design experience,
and enjoyed the process. She effectively utilized the system’s fea-
tures, such as reverting to previous iterations via the history area
when her exploration veered in an undesired direction, and she
repeatedly refined each character after the initial style propagation.
For details on P18’s design process, refer to the supplemental mate-
rial. P19 designed characters for a birthday card, aiming for cursive
and fashionable font, and expressed satisfaction with the result. P20
created a font for a movie poster, aiming for characters that were
"scary," "thick," and "retro," with shapes fitting within a rectangular
form (e.g., the shape of "S" resembling a rectangle). While he was
generally satisfied with the overall design, he found it challenging
to achieve symmetry in characters like "A," "M," and "T." Overall,
although participants encountered challenges in addressing minor
distortions and style inconsistencies, all expressed satisfaction with
their final designs.

6.2 Designing CJK Fonts

In the user study Section 5.2, we demonstrated that participants
could efficiently design Roman characters using our proposed sys-
tem. By swapping the font generative model, the system can also

P15 P16 P17

P18 P19 P20

Figure 11: Designed characters for the advertisement posters.

The participants designed the characters while viewing back-

ground images for the posters. The two posters on the top

left are for an autumn foliage festival. P17 created a poster

for a summer sale, while P18 designed characters for a Hal-

loween event. P19 developed a font for a birthday card, and

P20 created one for a movie poster.

support other writing systems, including Chinese, Japanese, and
Korean (CJK). As shown in Figure 12, users can efficiently design
CJK characters without the need of predesigned examples. Once
the design process is complete, users can download their custom
fonts as OTF files.

Figure 12: Screenshots of CJK font character design. The

demonstration of CJK character designs using our system.

The order is displayed in the upper right corner of each

screenshot. See the supplemental material for the video.

FontCraft: Multimodal Font Design Using Interactive Bayesian Optimization CHI ’25, April 26-May 1, 2025, Yokohama, Japan

7 DISCUSSION, LIMITATIONS AND FUTURE

WORK

Professional Designers Interview. In our user study and demon-
stration, we focused on non-expert users, as our system is designed
to help them create fonts without requiring specialized knowledge.
However, feedback from professional designers (D1 and D2) is also
crucial for identifying areas for improvement and enhancing the
versatility of FontCraft. To gather feedback, we interviewed two
professional designers from an advertising company, demonstrat-
ing our system and its outputs while asking two main questions: 1.
"Is our system practical for designing advertisements in real-world sce-

narios?" 2. "Are there any areas in our method that could be improved

or features that should be added?"

For the first question, both designers said they often need to
create or customize unique characters for advertisement posters and
logos. They acknowledged that our system is suitable for such tasks,
validating its use in designing characters for posters and conference
logos. For the second question, they pointed out that the distortion
in the generated characters should be fixed for use in real-world
scenarios. Additionally, they expressed that a function allowing
users to edit the generated characters is desirable. Moreover, D1
noted that, for logo design, she sometimes needs to create each
unique character in different styles; thus, the style propagation
feature is not needed in such cases. This feedback suggests that
offering an option to disable style propagation could enhance user
flexibility. D2 mentioned that it would be beneficial to save all
generated characters, visualize them in the UI, and allow users to
revisit any previous points. This implies that developing a more
comprehensive history visualization feature could be a potential
future work.

Limited Quality of the Generate Characters. As noted by sev-
eral participants in Section 5.2 and Section 6, generated characters
exhibit distortions and visual artifacts. Additionally, despite our sys-
tem’s ability to help users design style-consistent characters, some
style inconsistencies persist. For instance, during the demonstration
of conference logo design in Section 6, P11 mentioned the difficulty
in applying the fading effect seen in “H” and “5” to “2”. These issues
stem from the limitations of the font generative model [37] and
the vectorization method [24] used in our system. Our system re-
quires a font generative model that can generate characters rapidly
while manipulating the slider. Therefore, even though some exist-
ing font generative models [8, 10, 19, 20, 29] can produce characters
with higher-quality and in more consistent styles, we cannot use
them since they take longer time to generate. For example, Vec-
Fusion [29] takes 10 seconds to generate one glyph using A100,
which is not feasible for interactive applications. Meanwhile, this
limitation also makes it harder for users to use our system to design
style-consistent fonts containing many characters (e.g., 52). How-
ever, we believe that with the progress of font generative models,
our system can utilize the latest models and generate fonts in higher
quality. To tackle these issues, we plan to explore how to optimize
both the speed and quality of font generation. This includes inte-
grating more advanced vectorization techniques or improving the
efficiency of recent generative models without sacrificing real-time
performance.

Broader Search Subspace for Multimodal References. The current
multimodal-guided subspace is constructed by directly connecting
a single encoded multimodal reference and previous user prefer-
ence. Although this approach enables users to explore the latent
space around the multimodal reference, it may restrict other font
style variations that are similar to the multimodal reference. In the
future, we plan to investigate how to construct a search subspace
by connecting one or multiple multimodal references to an area in
the style latent space that contains potential samples matching the
desired styles similar to [16].

Direct Character Editing. As described in Section 6, some users
had difficulty create desired characters due to character detail ar-
tifacts introduced by the font generative model and vectorization
process. In the future, to mitigate these artifacts, we plan to in-
troduce painting tools that will allow users to edit the generated
characters directly.

UI for Additional Typographical Support. To design a font ready
for production, it is crucial to include features that align charac-
ters with baseline, mean line, and other typographical guidelines
including kerning. These are essential for improving the overall
appearance, alignment, and readability of the text. We next plan to
investigate how to integrate different user interfaces to facilitate
font design that takes these typographical guidelines into consider.

8 CONCLUSION

In this paper, we introduced FontCraft, a new font design system
that enables non-expert users to create fonts of any writing system
without the need for predesigned characters. Our system makes
two main technical contributions: multimodal-guided subspace
and retractable preference modeling, which address the two key
limitations in existing human-in-the-loop PBO. Additionally, we
incorporated an iterative style propagation and refinement process,
enabling users to design style consistent font. Through a study, we
demonstrated that non-expert users can efficiently design Roman
characters using our system, supported by both quantitative and
qualitative analysis. Furthermore, we showcased how users could
create Roman and CJK characters in realistic scenarios and achieve
satisfying results. FontCraft is independent of any specific font
generative model, making it adaptable to various models beyond
DG-Font used in this paper. This flexibility ensures FontCraft can
evolve with future font generation technology advancements.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feedback.
This work was partially supported by JST AdCORP, Grant Number
JPMJKB2302, JSPS Grant-in-Aid JP23K16921, Japan, ANR-21-CE33-
0002 GLACIS, France, and a collaboration with Dentsu Digital.

REFERENCES

[1] Eric Brochu, Tyson Brochu, and Nando De Freitas. 2010. A Bayesian interactive
optimization approach to procedural animation design. In Proceedings of the 2010

ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 103–112.
[2] Eric Brochu, Vlad M Cora, and Nando De Freitas. 2010. A tutorial on Bayesian

optimization of expensive cost functions, with application to active user modeling
and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599 (2010).

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Tatsukawa, et al.

[3] Eric Brochu, Nando de Freitas, and Abhijeet Ghosh. 2007. Active preference
learning with discrete choice data. Advances in neural information processing

systems 20 (2007).
[4] Neill DF Campbell and Jan Kautz. 2014. Learning a manifold of fonts. ACM

Transactions on Graphics (ToG) 33, 4 (2014), 1–11.
[5] Junbum Cha, Sanghyuk Chun, Gayoung Lee, Bado Lee, Seonghyeon Kim, and

Hwalsuk Lee. 2020. Few-shot compositional font generation with dual memory.
In European Conference on Computer Vision. Springer, 735–751.

[6] Liwei Chan, Yi-Chi Liao, George B Mo, John J Dudley, Chun-Lien Cheng, Per Ola
Kristensson, and Antti Oulasvirta. 2022. Investigating Positive and Negative
Qualities of Human-in-the-Loop Optimization for Designing Interaction Tech-
niques. In Proceedings of the 2022 CHI Conference on Human Factors in Computing

Systems (CHI ’22). Article 112. https://doi.org/10.1145/3491102.3501850
[7] Toby Chong, I-Chao Shen, Issei Sato, and Takeo Igarashi. 2021. Interactive

Optimization of Generative Image Modelling using Sequential Subspace Search
and Content-based Guidance. In Computer Graphics Forum, Vol. 40. Wiley Online
Library, 279–292.

[8] Bin Fu, Fanghua Yu, Anran Liu, Zixuan Wang, Jie Wen, Junjun He, and Yu Qiao.
2024. Generate Like Experts: Multi-Stage Font Generation by Incorporating Font
Transfer Process into Diffusion Models. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition. 6892–6901.
[9] Stephanie Fu, Netanel Y Tamir, Shobhita Sundaram, Lucy Chai, Richard Zhang,

Tali Dekel, and Phillip Isola. 2023. DreamSim: learning new dimensions of human
visual similarity using synthetic data. In Proceedings of the 37th International

Conference on Neural Information Processing Systems. 50742–50768.
[10] Haibin He, Xinyuan Chen, Chaoyue Wang, Juhua Liu, Bo Du, Dacheng Tao, and

Qiao Yu. 2024. Diff-font: Diffusion model for robust one-shot font generation.
International Journal of Computer Vision (2024), 1–15.

[11] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic
models. Advances in neural information processing systems 33 (2020), 6840–6851.

[12] Xun Huang and Serge Belongie. 2017. Arbitrary style transfer in real-time
with adaptive instance normalization. In Proceedings of the IEEE international

conference on computer vision. 1501–1510.
[13] Yue Jiang, Zhouhui Lian, Yingmin Tang, and Jianguo Xiao. 2017. DCFont: an end-

to-end deep Chinese font generation system. In SIGGRAPH Asia 2017 Technical

Briefs. 1–4.
[14] Florian Kadner, Yannik Keller, and Constantin Rothkopf. 2021. Adaptifont: In-

creasing individuals’ reading speed with a generative font model and bayesian
optimization. In Proceedings of the 2021 chi conference on human factors in com-

puting systems. 1–11.
[15] Yuki Koyama, Toby Chong, and Takeo Igarashi. 2022. Preferential Bayesian

Optimisation for Visual Design. In Bayesian Methods for Interaction and Design,
John H Williamson, Antti Oulasvirta, Per Ola Kristensson, and Nikola Banovic
(Eds.). Cambridge University Press, Chapter 8, 239–258.

[16] Yuki Koyama, Issei Sato, and Masataka Goto. 2020. Sequential gallery for interac-
tive visual design optimization. ACM Transactions on Graphics (TOG) 39, 4 (2020),
88–1.

[17] Yuki Koyama, Issei Sato, Daisuke Sakamoto, and Takeo Igarashi. 2017. Sequential
line search for efficient visual design optimization by crowds. ACM Transactions

on Graphics (TOG) 36, 4 (2017), 1–11.
[18] Zhouhui Lian, Bo Zhao, Xudong Chen, and Jianguo Xiao. 2018. EasyFont: a style

learning-based system to easily build your large-scale handwriting fonts. ACM
Transactions on Graphics (TOG) 38, 1 (2018), 1–18.

[19] Yitian Liu and Zhouhui Lian. 2024. QT-Font: High-efficiency Font Synthesis via
Quadtree-based Diffusion Models. In ACM SIGGRAPH 2024 Conference Papers.
1–11.

[20] Ying-Tian Liu, Zhifei Zhang, Yuan-Chen Guo, Matthew Fisher, Zhaowen Wang,
and Song-Hai Zhang. 2023. Dualvector: Unsupervised vector font synthesis with
dual-part representation. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition. 14193–14202.
[21] George Mo, John Dudley, Liwei Chan, Yi-Chi Liao, Antti Oulasvirta, and Per Ola

Kristensson. 2024. Cooperative Multi-Objective Bayesian Design Optimization.
ACM Trans. Interact. Intell. Syst. 14, 2 (2024). https://doi.org/10.1145/3657643

[22] Peter O’Donovan, Jundefinednis Lundefinedbeks, Aseem Agarwala, and Aaron
Hertzmann. 2014. Exploratory Font Selection Using Crowdsourced Attributes.
ACM Transactions on Graphics 33, 4, Article 92 (2014), 9 pages. https://doi.org/
10.1145/2601097.2601110

[23] Song Park, Sanghyuk Chun, Junbum Cha, Bado Lee, and Hyunjung Shim. 2021.
Multiple heads are better than one: Few-shot font generation with multiple
localized experts. In Proceedings of the IEEE/CVF International Conference on

Computer Vision. 13900–13909.
[24] Peter Selinger. 2003. Potrace: a polygon-based tracing algorithm.
[25] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Fre-

itas. 2015. Taking the human out of the loop: A review of Bayesian optimization.
Proc. IEEE 104, 1 (2015), 148–175.

[26] Danyang Sun, Tongzheng Ren, Chongxun Li, Hang Su, and Jun Zhu. 2017. Learn-
ing to write stylized chinese characters by reading a handful of examples. arXiv
preprint arXiv:1712.06424 (2017).

[27] Rapee Suveeranont and Takeo Igarashi. 2010. Example-based automatic font
generation. In International Symposium on Smart Graphics. Springer, 127–138.

[28] Yuki Tatsukawa, I-Chao Shen, Anran Qi, Yuki Koyama, Takeo Igarashi, and Ariel
Shamir. 2024. FontCLIP: A Semantic Typography Visual-Language Model for
Multilingual Font Applications. Computer Graphics Forum (2024).

[29] Vikas Thamizharasan, Difan Liu, Shantanu Agarwal, Matthew Fisher, Michaël
Gharbi, Oliver Wang, Alec Jacobson, and Evangelos Kalogerakis. 2024. VecFusion:
Vector Font Generation with Diffusion. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition. 7943–7952.
[30] Yuchen Tian. 2016. Rewrite: Neural Style Transfer For Chinese Fonts. (2016).
[31] Yuchen Tian. 2017. zi2zi: Master Chinese Calligraphy with Conditional Adver-

sarial Networks. (2017).
[32] Paul Upchurch, Noah Snavely, and Kavita Bala. 2016. From A to Z: supervised

transfer of style and content using deep neural network generators. arXiv preprint
arXiv:1603.02003 (2016).

[33] Yizhi Wang, Yue Gao, and Zhouhui Lian. 2020. Attribute2font: Creating fonts you
want from attributes. ACM Transactions on Graphics (TOG) 39, 4 (2020), 69–1.

[34] Yizhi Wang and Zhouhui Lian. 2021. Deepvecfont: synthesizing high-quality
vector fonts via dual-modality learning. ACM Transactions on Graphics (TOG) 40,
6 (2021), 1–15.

[35] Yuqing Wang, Yizhi Wang, Longhui Yu, Yuesheng Zhu, and Zhouhui Lian. 2023.
Deepvecfont-v2: Exploiting transformers to synthesize vector fonts with higher
quality. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition. 18320–18328.
[36] Zeqing Xia, Bojun Xiong, and Zhouhui Lian. 2023. Vecfontsdf: Learning to

reconstruct and synthesize high-quality vector fonts via signed distance func-
tions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition. 1848–1857.
[37] Yangchen Xie, Xinyuan Chen, Li Sun, and Yue Lu. 2021. Dg-font: Deformable

generative networks for unsupervised font generation. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition. 5130–5140.
[38] Songhua Xu, Tao Jin, Hao Jiang, and Francis CM Lau. 2009. Automatic generation

of personal chinese handwriting by capturing the characteristics of personal
handwriting. In Twenty-First IAAI Conference.

[39] Kenta Yamamoto, Yuki Koyama, and Yoichi Ochiai. 2022. Photographic Lighting
Design with Photographer-in-the-Loop Bayesian Optimization (UIST ’22). As-
sociation for Computing Machinery, New York, NY, USA, Article 92, 11 pages.
https://doi.org/10.1145/3526113.3545690

[40] Zhenhua Yang, Dezhi Peng, Yuxin Kong, Yuyi Zhang, Cong Yao, and Lianwen
Jin. 2024. Fontdiffuser: One-shot font generation via denoising diffusion with
multi-scale content aggregation and style contrastive learning. In Proceedings of

the AAAI conference on artificial intelligence, Vol. 38. 6603–6611.
[41] Yexun Zhang, Ya Zhang, and Wenbin Cai. 2018. Separating Style and Content

for Generalized Style Transfer. In 2018 IEEE/CVF Conference on Computer Vision

and Pattern Recognition. 8447–8455.
[42] Baoyao Zhou, Weihong Wang, and Zhanghui Chen. 2011. Easy generation of

personal Chinese handwritten fonts. In 2011 IEEE international conference on

multimedia and expo. IEEE, 1–6.
[43] Yijun Zhou, Yuki Koyama, Masataka Goto, and Takeo Igarashi. 2020. Genera-

tive melody composition with human-in-the-loop bayesian optimization. arXiv
preprint arXiv:2010.03190 (2020).

[44] Alfred Zong and Yuke Zhu. 2014. Strokebank: Automating personalized chinese
handwriting generation. In Twenty-Sixth IAAI Conference.

https://doi.org/10.1145/3491102.3501850
https://doi.org/10.1145/3657643
https://doi.org/10.1145/2601097.2601110
https://doi.org/10.1145/2601097.2601110
https://doi.org/10.1145/3526113.3545690

	Abstract
	1 Introduction
	2 Related Work
	2.1 Automatic Font Generation
	2.2 Human-in-the-Loop Bayesian Optimization

	3 FontCraft System Overview
	3.1 System Architecture
	3.2 User Interface

	4 Method
	4.1 Preliminary of Font Generative Model
	4.2 Preliminary of FontCLIP
	4.3 Preliminary of Human-in-the-Loop Bayesian Optimization
	4.4 Multimodal Bayesian Optimization for Font Generation

	5 Evaluation
	5.1 Simulated Evaluation of Multimodal Reference
	5.2 User Study

	6 Application Demonstrations
	6.1 Designing Fonts for Graphic Design Purposes
	6.2 Designing CJK Fonts

	7 Discussion, Limitations and Future Work
	8 Conclusion
	Acknowledgments
	References

